Cho tam giác ABC cân tại A .Trên các cạnh AB,AC lấy điểm M,N sao cho MN = CN
a) Tứ giác BMNC là hình gì ? Vì sao ?
b ) Tính các góc của tứ giác BMNC biết rằng  = 40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a/ Tứ giác BMNC là hình thang cân do có hai góc ở đáy bằng nhau(tam giác ABC cân tại A)
b/ Ta có : Góc A+ góc B + góc C=180o (tổng các góc trong tam giác)
(góc B + góc C)=180o - góc A=180o -40o =140o
Mà góc B = Góc C ( tam giác ABC cân )
Suy ra góc B=Góc C=140o :2=70o
Ta lại có: Hình thang BMNC cân BMNC có:
góc MNC=góc NMB(2 góc kề một đáy bằng nhau)
Mà góc B+góc C +góc MNC+góc NMB=360o ( tổng các góc trong tứ giác )
suy ra góc MNC+góc NMB=360o -(góc B + góc C)=360o -140o =220o
Mà góc MNC= góc NMB
suy ra góc MNC=góc NMB=220o :2=110o
o0 học tốt nhé 0o
Cậu có nhầm đề không vậy ??? Nếu vẽ như đề cậu thì chắc chắn cái tứ giác đó cũng chỉ là tứ giác bình thường thôi
a: Xét ΔABC có
\(\dfrac{BM}{AB}=\dfrac{CN}{AC}\)
Do đó: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
a) Xét ΔABC có
\(\dfrac{BM}{AB}=\dfrac{CN}{AC}\left(BM=CN;AB=AC\right)\)
nên MN//BC(Định lí Ta lét đảo)
Xét tứ giác BMNC có MN//BC(cmt)
nên BMNC là hình thang
Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
nên BMNC là hình thang cân
b) \(\widehat{B}=\widehat{C}=\dfrac{180^0-40^0}{2}=70^0\)
\(\Leftrightarrow\widehat{BMN}=\widehat{MNC}=180^0-70^0=110^0\)
a) ta có AB/AM = AC/AN (AB = AC và AM = AN theo giả thiết)
nên theo định lý đảo của định lý talet ta có MN // với BC
vậy BMNC là hình thang cân
b) xét tam giác ABC có góc A = 400. tam giác cân tại A nên ta có
góc A = góc B = (180-40):2 = 700
xét hình thang cân BMNC có:
góc BMN = góc CNM (vì đây là hai góc cùng kề 1 đáy của hình thang cân) = (360 - góc BMN - góc CNM): 2 = (360-70-70): 2 = 1100
a)Có: AB=AM+MB
AC=AN+NC
Mà: AB=AC(gt) ; BM=CN(gt)
=>AM=AN
=> ΔAMN cân tại A
=>\(\widehat{AMN}=\frac{180-\widehat{A}}{2}\) (1)
Xét ΔABC cân tại A(gt)
=>\(\widehat{ABC}=\frac{180-\widehat{A}}{2}\) (2)
Từ (1)(2) suy ra:
^AMN=^ABC.MÀ hai góc này ở vị trí soletrong
=>MN//BC
Lại có: ^B=^C(gt)
=>BMNC là hình thang cân
b) Có: \(\widehat{MBC}=\widehat{NCB}=\frac{180-\widehat{A}}{2}=\frac{180-40}{2}=\frac{140}{2}=70\) (vì BMNC là ht)
Có: ^MBC+^BMN=180
=>^BMN=180-^MBC=180-70=110
=>^BMN=^MNC=110
Câu hỏi tương tự
a) Chứng minh BN là tia phân giác của góc N, CN là tia phân giác của góc C nên điểm M;N là đường phân giác của hình tam giác ABC
thì BM = MN = NC.