1/1.4 + 1/4.7 + 1/7.10 ... + 1/x.(x+3) = 125/376
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{375}{376}\)
\(\Leftrightarrow1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{375}{376}\)
\(\Leftrightarrow1-\dfrac{1}{x+3}=\dfrac{375}{376}\)
\(\Leftrightarrow\dfrac{1}{x+3}=1-\dfrac{375}{376}=\dfrac{1}{376}\)
\(\Rightarrow x+3=376\)
\(\Rightarrow x=373\)
bạn ơi như là cô giáo cho đề sai rồi kết quả phải là \(\frac{375}{376}\)thì mới giải được
Ta có:
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{125}{376}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{125}{376}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{x+3}=\frac{125}{376}:\frac{1}{3}=\frac{375}{376}\)
\(\Rightarrow\frac{1}{x+3}=1-\frac{375}{376}=\frac{1}{376}\Leftrightarrow x+3=376\Leftrightarrow x=373\)
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)
\(3.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}\right)=3.\frac{125}{376}\)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{375}{376}\)
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{375}{376}\)
\(1-\frac{1}{x+3}=\frac{375}{376}\)
\(\frac{x+2}{x+3}=\frac{375}{376}\)
=> x + 2 = 375
=> x = 375 - 2
=> x = 373
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{125}{376}\)
\(\Leftrightarrow\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{125}{376}\)
\(\Leftrightarrow\dfrac{1}{3}\left(1-\dfrac{1}{x+3}\right)=\dfrac{125}{376}\left(x\ne0;x\ne-3\right)\)
\(\Leftrightarrow\dfrac{x+3-1}{x+3}=\dfrac{3.125}{376}\Leftrightarrow\dfrac{x+2}{x+3}=\dfrac{3.125.}{376}.\dfrac{\left(x+3\right)}{x+3}\)
\(\Leftrightarrow376\left(x+2\right)=3.125.\left(x+3\right)\)
\(\Leftrightarrow376x+752=375x+1125\)
\(\Leftrightarrow376x-375x=1125-752\Leftrightarrow x=373\left(x\in N^{\cdot}\right)\)
\(\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{6}{19}\)
\(\frac{1}{3}\left(1-\frac{1}{x+3}\right)=\frac{6}{19}\)
\(\frac{1}{3}\times\frac{x+3-1}{x+3}=\frac{6}{19}\)
\(\frac{x+3-1}{x+3}=\frac{6}{19}\div\frac{1}{3}\)
\(\frac{x+2}{x+3}=\frac{18}{19}\)
x = 16
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{x+3}\right)=\frac{667}{2002}\)
\(\frac{1}{1}-\frac{1}{x+3}=\frac{667}{2002}:\frac{1}{3}\)
\(\frac{1}{1}-\frac{1}{x+3}=\frac{2001}{2002}\)
\(\frac{1}{x+3}=1-\frac{2001}{2002}\)
\(\frac{1}{x+3}=\frac{1}{2002}\)
\(\frac{1}{x}=\frac{1}{2002-3}\)
\(\frac{1}{x}=\frac{1}{1999}\)
Vậy x = 1999
đặt VT là A ta có:
\(3A=3\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{x\left(x+3\right)}\right)\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{6}{19}\)
\(3A=1-\frac{1}{x+3}\)
\(A=\left(1-\frac{1}{x+3}\right):3\)
thay A vào VT ta đc:\(\left(1-\frac{1}{x+3}\right):3=\frac{6}{19}\)
\(1-\frac{1}{x+3}=\frac{18}{19}\)
\(\frac{1}{x+3}=\frac{1}{19}\)
=>x+3=19
=>x=16
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)
=>\(3\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}\right)=3.\frac{125}{376}\)
=>\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{375}{376}\)
=>\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{375}{376}\)
=>\(1-\frac{1}{x+3}=\frac{375}{376}\)
=>\(\frac{1}{x+3}=1-\frac{375}{376}\)
=>\(\frac{1}{x+3}=\frac{1}{376}\)
=>x+3=376
=>x=376-3
=>x=373
Vậy x=373
1/1+4 +1/4×7 +1/7×10+.....+1/x×(x+3)=16/49