CMR: Các biểu thức sau luôn có giá trị dương với mọi giá trị của các biến
Q= x2 + y2 + xy + x + y + 10
Ai giúp em với ạ, em đang cần rất gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`B = x^2- 2xy + y^2 + 2x - 10y + 17
`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`
`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.
\(A=-x^2+3x-7\)
\(=-\left(x^2-3x+7\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}< 0\forall x\)
\(3x-7-x^2=-\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{19}{4}=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}\le-\dfrac{19}{4}< 0\)
\(2x^2+2x+7=2x^2+2x+\frac{1}{2}+\frac{13}{2}\)
\(=2\left(x^2+x+\frac{1}{4}\right)+\frac{13}{2}=2.\left(x+\frac{1}{2}\right)^2+\frac{13}{2}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2.\left(x+\frac{1}{2}\right)^2+\frac{13}{2}\ge\frac{13}{2}\forall x\)
\(\Rightarrow2x^2+2x+7\ge\frac{13}{2}\forall x\)
hay biểu thức \(2x^2+2x+7\)luôn dương với mọi x ( đpcm )
2x2 + 2x + 7
= 2( x2 + x + 1/4 ) + 13/2
= 2( x + 1/2 )2 + 13/2 ≥ 13/2 > 0 ∀ x ( đpcm )
\(x^2-x+1-m=0\left(1\right)\\ \text{PT có 2 nghiệm }x_1,x_2\\ \Leftrightarrow\Delta=1-4\left(1-m\right)\ge0\\ \Leftrightarrow4m-3\ge0\Leftrightarrow m\ge\dfrac{3}{4}\\ \text{Vi-ét: }\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=1-m\end{matrix}\right.\\ \text{Ta có }5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\\ \Leftrightarrow5\cdot\dfrac{x_1+x_2}{x_1x_2}-x_1x_2+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m-1+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m+3=0\\ \Leftrightarrow5+\left(1-m\right)\left(m+3\right)=0\\ \Leftrightarrow m^2+2m-8=0\\ \Leftrightarrow m^2-2m+4m-8=0\\ \Leftrightarrow\left(m-2\right)\left(m+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(n\right)\\m=-4\left(l\right)\end{matrix}\right.\)
Vậy $m=2$
Ta có \(xy\le\dfrac{\left(x+y\right)^2}{4}\).
Do đó ta có: \(x+y+xy=x+y-2xy+3xy\le x+y-2xy+\dfrac{3}{4}\left(x+y\right)^2\)
\(\Rightarrow x^2+y^2\le x+y-2xy+\dfrac{3}{4}\left(x+y\right)^2\)
\(\Leftrightarrow\dfrac{1}{4}\left(x+y\right)^2-\left(x+y\right)\le0\)
\(\Leftrightarrow\left(x+y\right)\left[\dfrac{1}{4}\left(x+y\right)-1\right]\le0\)
\(\Leftrightarrow0\le x+y\le4\).
Do đó m = 0, n = 4.
Vậy m2 + n2 = 16. Chọn A.
B = \(x^2\) - 2\(xy\) + 2y\(^2\) + 2\(x\) - 10y + 17
B = (\(x^2\) - 2\(xy\) + y2) + 2(\(x-y\)) + 1 + (y2 - 8y + 16)
B = (\(x-y\))2 + 2(\(x-y\)) + 1 + (y - 4)2
B = (\(x-y\) + 1)2 + (y - 4)2
(\(x-y+1\))2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0
B ≥ 0
Kết luận biểu thức không âm. Chứ không phải là biểu thức luôn dương em nhé. Vì dương thì biểu thức phải > 0 ∀ \(x;y\). Mà số 0 không phải là số dương.
a,Ta cần tìm hệ số tỉ lệ nghịch của y đối với x,từ đó tìm được giá trị của y khi x = 6,x = -10
Vì x và y là hai đại lượng tỉ lệ nghịch,nên ta có công thức tổng quát :
\(y=\frac{a}{x}\)
Thay x = 8 và y = 15 ta có : \(15=\frac{a}{8}\Leftrightarrow a=15\cdot8=120\).
Do đó : \(y=\frac{120}{x}\)
b,x = 6 thì y = \(\frac{120}{6}=20\) ;x = -10 thì y = \(\frac{120}{-10}=-12\)
c, y = 2 thì \(2=\frac{120}{x}\Leftrightarrow x=60\) ; y = -30 thì \(-30=\frac{120}{x}\Leftrightarrow x=-40\)
a)15:8
b)6:15;-10:15
c)8:2;-30:15
mình chỉ làm bừa thôi nếu sai thì đừng chửi mình nhé
\(Q=x^2+y^2+xy+x+y+10\)
\(=\left(x^2+xy+x\right)+y^2+y+10\)
\(=x^2+x\left(y+1\right)+y^2+y+10\)
\(=x^2+2.x.\frac{y+1}{2}+\left(\frac{y+1}{2}\right)^2+y^2+y-\left(\frac{y+1}{2}\right)^2+10\)
\(=\left(x+\frac{y+1}{2}\right)^2+y^2+y-\frac{\left(y+1\right)^2}{4}+10\)
\(=\left(x+\frac{y+1}{2}\right)^2+y^2+y-\frac{y^2+2y+1}{4}+10\)
\(=\left(x+\frac{y+1}{2}\right)^2+y^2+y-\frac{1}{4}y^2-\frac{1}{2}y-\frac{1}{4}+10\)
\(=\left(x+\frac{y+1}{2}\right)^2+\frac{3}{4}y^2+\frac{1}{2}y+\frac{39}{4}\)
\(=\left(x+\frac{y+1}{2}\right)^2+\frac{3}{4}\left(y^2+\frac{2}{3}y+13\right)=\left(x+\frac{y+1}{2}\right)^2+\frac{3}{4}\left(y^2+2.y.\frac{2}{6}+\frac{4}{36}-\frac{4}{36}+13\right)\)
\(=\left(x+\frac{y+1}{2}\right)^2+\frac{3}{4}\left[\left(y+\frac{2}{6}\right)^2+\frac{116}{9}\right]=\left(\frac{2x+y+1}{2}\right)^2+\frac{3}{4}\left(y+\frac{2}{6}\right)^2+\frac{29}{3}\)
Vì \(\left(\frac{2x+y+1}{2}\right)^2\ge0;\frac{3}{4}\left(y+\frac{2}{6}\right)^2\ge0=>\left(\frac{2x+y+1}{2}\right)^2+\frac{3}{4}\left(y+\frac{2}{6}\right)^2+\frac{29}{3}\ge\frac{29}{3}>0\) (với mọi x;y)
Vậy biểu thức Q luôn dương với mọi giá trị của biến
=>4Q=4x2+4xy+4y2+4x+4y+40
=4x2+4x(y+1)+(y+1)2+4y2-y2+4y-2y+40-1
=(2x+y+1)2+3y2+2y+39
\(=\left(2x+y+1\right)^2+\left(\sqrt{3}y+\frac{\sqrt{3}}{3}\right)^2+\frac{116}{3}\)
\(\Rightarrow Q=\left(\frac{2x+y+1}{2}\right)^2+\left(\frac{\sqrt{3}y+\frac{\sqrt{3}}{3}}{2}\right)^2+\frac{29}{3}>0\)
=>đpcm