tìm a
a+ 1 phần 2 *a =15
giải nhanh giúp mình vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)
\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)
\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)
Ta có: \(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}}{4-\sqrt{a}}\)
a) ĐKXĐ: \(a\ne4;a\ne16;a\ge0\)
\(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}-\dfrac{4\sqrt{a}}{\sqrt{a}-4}\)
\(P=\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}-\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(P=\dfrac{a+3\sqrt{a}+2\sqrt{a}+6-a+2\sqrt{a}+\sqrt{a}-2-4\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
\(P=\dfrac{4\sqrt{a}+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
\(P=\dfrac{4\sqrt{a}+4}{a-4}\)
b) Thay x=9 vào P ta có:
\(P=\dfrac{4\cdot\sqrt{9}+4}{9-4}=\dfrac{16}{5}\)
c) \(P< 0\) khi:
\(\dfrac{4\sqrt{x}+4}{a-4}< 0\)
Mà: \(4\sqrt{x}+4>0\)
\(\Rightarrow a-4< 0\)
\(\Rightarrow a< 4\)
kết hợp với Đk ta có:
\(0\le x< 4\)
a.\(x+\dfrac{4}{7}=\dfrac{38}{21}\)
\(x=\dfrac{38}{21}-\dfrac{4}{7}\)
\(x=\dfrac{38}{21}-\dfrac{12}{21}=\dfrac{26}{21}\)
b.\(x-\dfrac{1}{3}=\dfrac{7}{45}:\dfrac{2}{15}\)
\(x-\dfrac{1}{3}=\dfrac{7}{6}\)
\(x=\dfrac{7}{6}+\dfrac{1}{3}\)
\(x=\dfrac{7}{6}+\dfrac{2}{6}=\dfrac{9}{6}\)
a: \(A=\dfrac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{2\sqrt{a}-1}{3-\sqrt{a}}\)
\(=\dfrac{2\sqrt{a}-9-\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)+\left(2\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\dfrac{2\sqrt{a}-9-a+9+2a-5\sqrt{a}+2}{\left(\sqrt{a}-2\right)\cdot\left(\sqrt{a}-3\right)}\)
\(=\dfrac{a-3\sqrt{a}+2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\dfrac{\sqrt{a}-1}{\sqrt{a}-3}\)
b: A là số nguyên
=>\(\sqrt{a}-3+2⋮\sqrt{a}-3\)
=>\(\sqrt{a}-3\in\left\{1;-1;2;-2\right\}\)
=>a thuộc {16;25;1}
a: Ta có: \(\left(x+3\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)=6\)
\(\Leftrightarrow x^2-9-x^2-3x+10=6\)
\(\Leftrightarrow-3x=5\)
hay \(x=-\dfrac{5}{3}\)
c: \(4x^2-9=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(a,\Leftrightarrow x^2-9-x^2-3x+10=6\\ \Leftrightarrow-3x=5\Leftrightarrow x=-\dfrac{5}{3}\\ b,\Leftrightarrow2x^2+3x^2-3=5x^2+5x\\ \Leftrightarrow5x=-3\Leftrightarrow x=-\dfrac{3}{5}\\ c,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\\ d,\Leftrightarrow\left(5-2x\right)^2-4=0\\ \Leftrightarrow\left(5-2x-2\right)\left(5-2x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{7}{2}\end{matrix}\right.\\ e,\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
\(f,\Leftrightarrow\left(2x+9\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{9}{2}\end{matrix}\right.\\ g,\Leftrightarrow\left(x^2-4\right)\left(3x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=\dfrac{4}{3}\end{matrix}\right.\\ h,\Leftrightarrow\left(x+1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^4+2x^2+1-x^2\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô.lí\right)\\\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=-1\)
Viết lại đề bài:
Tìm số nguyên x sao cho \(\frac{6}{x+1}.\frac{x-1}{3}\)là số nguyên
Giải:
\(\frac{6}{x+1}.\frac{x-1}{3}\text{}\)
\(=\frac{3.2}{x+1}.\frac{x-1}{3}\text{}\)
\(=\frac{3.2.\left(x-1\right)}{\left(x+1\right).3}\text{}\)
\(=\frac{3.2.\left(x-1\right)}{3.\left(x+1\right)}\)
\(=\frac{3.2.\left(x-1\right)}{3.\left(x+1\right)}\)
\(=\frac{2.\left(x-1\right)}{\left(x+1\right)}\)
\(=2.\frac{\left(x-1\right)}{\left(x+1\right)}\)
Bí....
Sorr nhak
Ta có:\(\frac{6x}{x+1}=\frac{6x+6-6}{x+1}=\frac{6\left(x+1\right)-6}{x+1}=6-\frac{6}{x+1}\)
Để\(\frac{6x}{x+1}\)là số nguyên \(\Leftrightarrow6⋮x+1\)
\(\Rightarrow x+1\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow x=\left\{-7;-4;-3;-2;0;1;2;5\right\}\left(1\right)\)
Để\(\frac{x-1}{3}\)là số nguyên\(\Leftrightarrow\left(x-1\right)⋮3\)
\(\Rightarrow x-1=3k\Rightarrow x=3k+1\left(k\in Z\right)\left(2\right)\)
Từ (1) và (2)\(\Rightarrow x\in\left\{-2;1\right\}\)
Vậy \(x\in\left\{-2;1\right\}\)
\(\frac{a+1}{2a}=15\left(ĐKXĐ:x\ne0\right)\)
\(\Rightarrow a+1=30a\)
\(\Leftrightarrow x=\frac{1}{29}\left(TMĐK\right)\)
\(\Rightarrow S=\left\{\frac{1}{29}\right\}\)