K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

Đa thức \(f\left(t\right)\)có dạng \(2t^2+at+b\)

Có:

\(f\left(-1\right)=2\left(-1\right)^2+a\left(-1\right)+b=0\)

\(2-a+b=0\)

\(b-a=2\)

\(f\left(2\right)=2.2^2+2a+b=0\)

\(8+2a+b=0\)

\(2a+b=-8\)

\(\Rightarrow\left(2a+b\right)-\left(b-a\right)=-8-2\)

\(3a=-10\)

\(a=-10:3\)

\(a=-\frac{10}{3}\)

\(b-\left(-\frac{10}{3}\right)=2\)

\(b=2-\frac{10}{3}\)

\(b=-\frac{4}{3}\)

Vậy \(f\left(t\right)=2t^2+\frac{-10}{3}t+\frac{-4}{3}\)

26 tháng 11 2023

Gọi A là đa thức cần tìm

Đa thức bậc năm một biến có hai hạng tử mà hệ số cao nhất là 2 nên Đa thức chắc chắn sẽ có dạng là \(A=2x^5+B\)

Hệ số tự do là 64 mà đa thức A chỉ có hai hạng tử nên \(A=2x^5+64\)

Đặt A=0
=>\(2x^5+64=0\)

=>\(x^5+32=0\)

=>\(x^5=-32\)

=>x=-2

18 tháng 3 2022

a) Gọi đa thức cần tìm là \(f\left(x\right)=ax+b\)

Do \(f\left(-1\right)=2\) nên thay \(x=-1\) ta có \(-a+b=2\), hay \(b=a+2\)

Do \(f\left(3\right)=-1\) nên thay \(x=3\) ta có \(3a+b=-1\), suy ra \(3a+a+2=-1\)

\(\Rightarrow4a=-3\Rightarrow a=-\dfrac{3}{4}\Rightarrow b=\dfrac{5}{4}\)

Vậy đa thức cần tìm là \(f\left(x\right)=-\dfrac{3}{4}x+\dfrac{5}{4}\)

b) Gọi đa thức cần tìm là \(g\left(x\right)=5x^2+bx+c\)

Do \(g\left(2\right)=5\) nên thay \(x=2\) ta có \(20+2b+c=5\Rightarrow2b+c=-15\)

\(\Rightarrow c=-15-2b\)

Do \(g\left(1\right)=-1\) nên thay \(x=1\) ta có \(5+b+c=-1\Rightarrow b+c=-6\)

\(\Rightarrow b-2b-15=-6\Rightarrow b=-9\Rightarrow c=3\)

Vậy đa thức cần tìm là \(g\left(x\right)=5x^2-9x+3\)

NM
15 tháng 8 2021

ta gọi x là biến của đa thức đó 

ta có đa thức là \(2x^5+128\)

xét \(2x^5+128=0\Leftrightarrow x^5=64\)

\(\Leftrightarrow x=\sqrt[5]{64}\) Vậy đa thức có nghiệm duy nhất 

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.Cm đa thức không có nghiệm hữu tỉ2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZCmR các hệ số của P(x) chia hết cho 7.3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.Tính P(12)+P(−8)10P(12)+P(−8)104. Tìm đa thức P(x)...
Đọc tiếp

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))

1
2 tháng 12 2016

toán lớp 8 khó ghê ai thích  thì nhớ kb nha

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Bậc của hạng tử -3x4 là 4 ( số mũ của x4)

Bậc của hạng tử -2x là 1 ( số mũ của x)

Bậc của 1 là 0