K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

Ta có : \(\left(x-3\right)^2+x^4=-y^2+6y-4\Leftrightarrow\left(x-3\right)^2+x^4=-\left(y^2-6y+9\right)+5\)

\(\Leftrightarrow\left(x-3\right)^2+x^4+\left(y-3\right)^2=5\)(1)

Từ (1) ta suy ra được : \(x^4\le5\Rightarrow-1\le x\le1\)( Vì \(x\in Z\))

Nhận xét , nếu \(x\le0\Rightarrow\left(y-3\right)^2=5-\left[\left(x-3\right)^2+x^4\right]< 0\) (vô lí)

Vậy x = 1.  Suy ra \(\left(y-3\right)^2=0\Leftrightarrow y=3\)

Kết luận : Tập nghiệm của phương trình : (x;y) = (1;3)

12 tháng 7 2016

Ta chia thành 2 trường hợp : 
a)y^2+y=x^4+x^3+x^2+x=0 (1) 
...(1)<=>y(y+1)=x(x^3+x^2+x+1)=0 
...Pt này có 4 nghiệm sau 
...x1=0; y1=0 
...x2=0; y2= -1 
...x3= -1; y3=0 
...x4= -1; y4= -1 
b)y^2+y=x^4+x^3+x^2+x (# 0) (2) 
...ĐK để 2 vế khác 0 là x và y đều phải khác 0 và -1.Với ĐK đó thì 
...(2)<=>y(y+1)=(x^2)(x^2+x+1+1/x) 
...Đến đây lại chia 2 th : 
...+{y=x^2 
.....{x+1+1/x=1 (3) 
.....(3) vô nghiệm =>th này vô nghiệm 
...+{y+1=x^2 
.....{x+1+1/x= -1 
....=>x= -1; y=0 (theo ĐK ở trên nghiệm này phải loại) 
...Vậy khi y^2+y=x^4+x^3+x^2+x # 0 thì pt vô nghiệm 
Tóm lại pt đã cho có 4 nghiệm 
x1=0; y1=0 
x2=0; y2= -1 
x3= -1; y3=0 
x4= -1; y4= -1

4 tháng 9 2017

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\Leftrightarrow\left(x+y\right)\left(\frac{zx+z^2+zy+xy}{xyz\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Rightarrow\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=0\).

Vậy  \(M=\frac{3}{4}+\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=\frac{3}{4}+0=\frac{3}{4}\)

5 tháng 9 2017

thank Gia Hy

13 tháng 2 2018

\(\left(x+1\right)\left(y-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0-1\\y=0+2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy x = - 1 ; y = 2

6 tháng 1 2018

\(A=\left(\dfrac{-3}{7}.x^3.y^2\right).\left(\dfrac{-7}{9}.y.z^2\right).\left(6.x.y\right)\)

\(A=\left(\dfrac{-3}{7}x^3y^2\right).\left(\dfrac{-7}{9}yz^2\right).6xy\)

\(A=\left(\dfrac{-3}{7}.\dfrac{-7}{9}.6\right).\left(x^3.x\right)\left(y^2.y.y\right).z^2\)

\(A=2x^4y^4z^2\)

\(B=-4.x.y^3\left(-x^2.y\right)^3.\left(-2.x.y.z^3\right)^2\)

\(B=\left[\left(-4\right).\left(-2\right)\right].\left(x.x^6.x^2\right)\left(y^3.y^3.y^2\right)\left(z^6\right)\)

\(B=8x^7y^{y^8}z^6\)

17 tháng 7 2023

\(\left(x-3\right);\left(y+x\right)\in\left\{-1;1;-7;7\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(2;-9\right);\left(4;3\right);\left(-4;3\right);\left(10;-9\right)\right\}\left(x,y\in Z\right)\)

27 tháng 5 2017

\(M=\frac{z^5.\left(x+y^2\right).\left(x^2-y^3\right).\left(x^2-y\right)}{x^2+y^2+z^2+1}=\frac{\left(-5\right)^5.\left(-4+16^2\right).\left[\left(-4\right)^2-16^3\right].\left[\left(-4\right)^2-16\right]}{\left(-4\right)^2+16^2+\left(-5\right)^2+1}\)

\(=\frac{\left(-5\right)^5.\left(-4+16^2\right).\left[\left(-4\right)^2-16^3\right].0}{\left(-4\right)^2+16^2+\left(-5\right)^2+1}=0\)

9 tháng 8 2019

a. \(A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(t=x^2+5xy+5y^2\left(t\inℤ\right)\)

\(\Rightarrow A=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2=\left(x^2+5xy+5y^2\right)^2\)

Vậy giá trị của A là một số chính phương

2 tháng 1 2023

Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)

Tương tự:

\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)

\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)

\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)