tìm số tự nhiên x để biểu thức a = ( 2007 + 2005 ) : ( x - 4 ) đạt giá trị lớn nhất
các bạn giải nhanh giúp mình ai nhanh mình tick nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Thay x = 38 vào p ta có P = \(\frac{38+64}{38-36}=\frac{102}{2}=51\)
b) Khi P = 101 => \(\frac{x+64}{x-36}=101\)
=> x + 64 = 101(x -36)
=> x + 64 = 101x - 3636
=> 101x - x = 3636 + 64
=> 100x = 3700
=> x = 37
c) Ta có P = \(\frac{x+64}{x-36}=\frac{x-36+100}{x-36}=1+\frac{100}{x-36}\)
Vì 1 là số tự nhiên => \(\frac{100}{x-36}\inℕ^∗\Leftrightarrow100⋮x-36\Rightarrow x-36\inƯ\left(100\right)\)
=> X - 36 \(\in\left\{1;2;4;5;10;20;25;50;100\right\}\)
=> \(x\in\left\{37;38;40;41;46;56;61;86;136\right\}\)
2) a) Thay x = 26 vào B ta có B = \(64:\left(26-16\right)=64:10=6,4\)
b) Khi B = 80
=> 64(x - 16) = 80
=> x - 16 = 1,25
=> x = 17,25
c) Để B đạt GTLN
=> x - 16 đạt GTNN
mà x - 6 khác 0
=> x - 16 = 1
=> x = 17
Khi đó B = 64 : (17 - 16) = 64
Vậy GTLN của B là 64 khi x = 1
1) Thay x = 38 vào p ta có P =
b) Khi P = 101 =>
=> x + 64 = 101(x -36)
=> x + 64 = 101x - 3636
=> 101x - x = 3636 + 64
=> 100x = 3700
=> x = 37
c) Ta có P =
Vì 1 là số tự nhiên =>
=> X - 36
=>
2) a) Thay x = 26 vào B ta có B =
b) Khi B = 80
=> 64(x - 16) = 80
=> x - 16 = 1,25
=> x = 17,25
c) Để B đạt GTLN
=> x - 16 đạt GTNN
mà x - 6 khác 0
=> x - 16 = 1
=> x = 17
Khi đó B = 64 : (17 - 16) = 64
Vậy GTLN của B là 64 khi x = 1
T/C của gttđ là >= 0 nên
a) GTNN = -4
b) GTLN = 2
c) GTNN = 2
Để M có giá trị lớn nhất thì \(a-6>0\) và \(a-6\) nhỏ nhất
*) \(a-6>0\)
\(\Rightarrow a>6\)
\(\Rightarrow a\in\left\{7;8;9;...\right\}\)
Mà \(a-6\) nhỏ nhất
\(\Rightarrow a=7\)
\(\Rightarrow M=2005+195:\left(7-6\right)\)
\(=2005+195\)
\(=2200\)
10 x 10 x X - 2017 = A
A là số tự nhiên ; X là số chẵn .
100 x X - 2017 = A
Muốn A là số tự nhiên thì X bé nhất là 21 .
Nhưng vì X chẵn nên X bé nhất là 22
A=100xX-2017
A là số tự nhiên nên X bé nhất là 21
Mà X chẵn nên X=22
Vậy giá trị nhỏ nhất của A là 10x10x22-2017=183
Ta có:
\(min\left\{\left(2007+2005\right):\left(x-4\right)\right\}\)
\(=min\left\{4012:\left(x-4\right)\right\}\)
\(\Rightarrow min\left\{x-4\left(\ne0\right)\right\}\)
\(\Rightarrow x=3\)