K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

Đặt \(A=x-x^2-1\)\(\Rightarrow2A=2x-2x^2-2=-\left(x^2-2x+1\right)-x^2-1=-\left[\left(x-1\right)^2+x^2\right]-1< 0\)

\(\Rightarrow2A< 0\Rightarrow A< 0\)

17 tháng 8 2019

\(x^2+x+\frac{1}{2}\)

\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{1}{2}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}>;0\forall x\)

Vậy đa thức trên vô nghiệm

23 tháng 6 2023

`K(-1/2)>1?`

23 tháng 6 2023

`x^2-x>=0?`

 

5 tháng 7 2016

\(\left(x+a\right)\left(x+b\right)\)

=>\(x^2+bx+ax+ab\)

=>\(x^2+\left(a+b\right)x+ab\)(ĐPCM)

Nhớ H cho mik nhé, các bạn.

18 tháng 9 2021

\(=x+10\sqrt{x}+25-20=\left(\sqrt{x}+5\right)^2-\left(2\sqrt{5}\right)^2\\ =\left(\sqrt{x}+5-2\sqrt{5}\right)\left(\sqrt{x}+5+2\sqrt{5}\right)\)

16 tháng 8 2023

a) Ta có:

\(VT=\left(a-b\right)^2\)

\(=a^2-2\cdot a\cdot b+b^2\)

\(=a^2-2ab+b^2\)

\(=a^2-4ab+2ab+b^2\)

\(=\left(a^2+2ab+b^2\right)-4ab\)

\(=\left(a+b\right)^2-4ab=VP\)

⇒ Đpcm

b) Ta có:

\(VT=\left(x+y\right)^2+\left(x-y\right)^2\)

\(=x^2+2\cdot x\cdot y+y^2+x^2-2\cdot x\cdot y+y^2\)

\(=x^2+2xy+y^2+x^2-2xy+y^2\)

\(=\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)

\(=2x^2+0+2y^2\)

\(=2x^2+2y^2\)

\(=2\left(x^2+y^2\right)=VP\)

⇒ Đpcm

a: (a-b)^2

=a^2-2ab+b^2

=a^2+2ab+b^2-4ab

=(a+b)^2-4ab

b: (x+y)^2+(x-y)^2

=x^2+2xy+y^2+x^2-2xy+y^2

=2x^2+2y^2

=2(x^2+y^2)

3 tháng 8 2023

\(\dfrac{\left(a+b\right)^2-\left(a-b\right)^2}{4}=\dfrac{a^2+2ab+b^2-a^2+2ab-b^2}{4}=\dfrac{4ab}{4}=ab\left(đpcm\right)\)

\(\left(x+y\right)^2+\left(x-y\right)^2=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2=2\left(x^2+y^2\right)\left(dpcm\right)\)

= ( x2 - 2 .x . 1/2 +1/4 ) 3/4

= (x-1/2)2 + 3/4 >= 3/4 > 0 nên luôn dương V  

học tốt

14 tháng 10 2019

Ta có:

\(x^2-x+1\)

\(=x^2-2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

vì \(\left(x-\frac{1}{2}\right)^2\ge0\)với \(\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với\(\forall x\)

hay giá trị của mỗi biểu thức trên luôn dương với mọi giá trị của biến