Cho M=4(x-2)(x-1)(x+4)(x+8)+25x^2.Chứng minh rằng M không âm với mọi x.
Trả lời nhanh jup mình vs.
ths nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=4\left(x^2+2x-8\right)\left(x^2+7x-8\right)+25x^2\)
Đặt y = x2 + 4,5x - 8, ta có:
\(M=4\left(y-2,5x\right)\left(y+2,5x\right)+25x^2\)
\(=4y^2-25x^2+25x^2=4y^2\ge0\forall x\in R\)
Tóm lại, M không có giá trị âm (đpcm)
M=4(x - 2)(x - 1)(x + 4)(x + 8) + 25x2
M=4 ( x - 2 )( x + 4 ).( x - 1 )( x + 8 )+ ( 5x )2
M=4 ( x2 + 2x - 8 )( x2 + 7x - 8 ) + ( 5x )2 (1)
Đặt t = x2 + 7 x - 8, khi đó (1) trở thành:
M=4( t - 5x ).t + ( 5x )2
M=4t2 - 20tx + ( 5x )2
M=( 2t - 5x )2
Thay t = x2 + 7x - 8 ta được: M= (2x2 + 9x - 16)2 >= 0
Vậy M luôn không có giá trị âm.
\(M=4\left(x-2\right)\left(x-1\right)\left(x+4\right)\left(x+8\right)+25x^2=4\left[\left(x-1\right)\left(x+8\right)\right]\left[\left(x-2\right)\left(x+4\right)\right]+25x3\)
\(M=4\left(x^2+7x-8\right)\left(x^2+2x-8\right)+\left(5x\right)^2\)
Đặt \(a=x^2+7x-8\Rightarrow x^2+2x-8=a-5x\)
\(\Rightarrow M=4a\left(a-5\right)+\left(5x\right)^2=\left(4a\right)^2-20a+\left(5x\right)^2=\left(4a-5x\right)^2\)
Thế \(a=x^2+7x-8\) vào , ta được :
\(M=\left(2a^2+9x-16\right)^2\)
Bạn Võ Thạch Đức Tín giải đúng nhưng sai một vài chỗ rồi, mình sửa lại nha.
Dòng thứ hai từ trên xuống : 25x3 sửa thành 25x2
Dòng thứ năm từ trên xuống : 4a ( a - 5 ) thành 4a.( a - 5x ), ( 4a )2 thành ( 2a ) 2 và - 20x thành -20ax
=> M = 4a.( a - 5 ) + ( 5x ) 2 = ( 2a ) 2 - 20x + ( 5x )2 = ( 2a - 5x )2
Vì chỗ này sai nên kết quả phải sửa lại thành :
M = ( 2x2 + 14x - 16 - 5x )2
= ( 2x2 + 9x - 16 )2
Tìm ra được đến đây rồi nhưng bạn chưa chứng minh được M không âm
Bổ sung
Vì ( 2x2 + 9x - 16 )2 > 0 với mọi x
=> M > 0
Vậy M luôn không âm
\(A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+21\left(x^2+1\right)^2-\left(x^2+1\right)-30\)
Ta thấy \(x^2+1\ge1>0\forall x\)
\(\Rightarrow\left(x^2+1\right)^2\ge\left(x^2+1\right)\forall x\ge0\)
\(\Leftrightarrow\left(x^2+1\right)^2-\left(x^2+1\right)\ge0\)
\(\Rightarrow A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+20\left(x^2+1\right)^2+\left(x^2+1\right)^2-\left(x^2+1\right)-30\)
\(\ge1^4+9.1^4+20.1^2+0-30=0\)
\(\Rightarrow Min.A=0\Leftrightarrow x^2+1=1\Leftrightarrow x=0\)
Vậy A luôn không âm với mọi giá trị của biến.
M=4(x - 2)(x - 1)(x + 4)(x + 8) + 25x2
M=4(x - 2)(x + 4).(x - 1)(x + 8)+(5x)2
M=4(x2+2x-8)(x2+7x-8)+(5x)2 (1)
Đặt t=x2+7x-8, khi đó (1) trở thành:
M=4(t-5x).t + (5x)2
M=4t2-20tx + (5x)2
M=(2t-5x)2
Thay t=x2+7x-8 ta được:
M=(2x2+9x-16)2 >= 0
Vậy M luôn không có giá trị âm.