K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

A B C B' C' A' G M N

Gọi M là trung điểm cạnh BC. Từ M kẻ MN vuông góc với d (N thuộc d)

=> MN là đường trung bình hình thang BB'C'C \(\Rightarrow MN=\frac{BB'+CC'}{2}\)

Mặt khác dễ dàng chứng minh được \(\Delta GA'A~\Delta GNM\left(g.g\right)\)

\(\Rightarrow\frac{AA'}{MN}=\frac{GA}{GM}=2\Rightarrow AA'=2MN=BB'+CC'\)

Vậy \(AA'=BB'+CC'\) (đpcm)

11 tháng 9 2016

Bạn không đọc được chỗ nào thì hỏi mình .

11 tháng 9 2016

khó quá mình mới lớp 7 thôi

15 tháng 9 2019

bạn vẽ hình ra thì đọc mới hiểu nha !

a) Ta có : BB' vuông góc với d ( giả thiết ) }

               MM' vuông góc với d ( giả thiết ) } => BB' // MM' // CC' ( từ vuông góc đến // )

               CC' vuông góc với d ( giả thiết )  }

Xét hình thang BB'C'C ( BB' // C'C - chứng minh trên ) có :

 M là trung điểm BC ( AM là trung tuyến - giả thiêt ) } 

 MM' // BB' ; MM' // CC' ( chứng minh trên )             } => M' là trung điểm BB'CC' ( định lí )

Xét hình thang BB'C'C có :

 M là trung điểm BC ( AM là trung tuyến ) }

M' là trung điểm B'C' ( chứng minh trên )  } => MM' là đường trung bình của hình thang BB'C'C ( định lí )

                                                                     => MM' = BB' + CC' / 2 ( định lí )

ĐÓ MÌNH CHỈ BIẾT LÀM CÂU A) THÔI, XL BẠN NHA !!!

23 tháng 7 2015

LẤy K sao cho K là TD BB' 

BB" // CC" ( cùng vuông góc với d )

=> B'BCC' là HT 

HT B'BCC' có BM = MC ( m là trung điểm)

                      KB' = KC' ( K là tđ)

=> KM là đg tb => KM = 1/2 ( BB' + CC") => 2KM = BB' + CC'  (1)

và KM // BB ; BB" vuông góc với d => KM vuông góc với d 

Xetsa tam giác AOA' vuông tại A' và tam giác KOM vuông tại K có 

                          OA = OM ( O là tđ)

                           AOA' = MOA ( đối đỉnh)

             => tam giác AOA' = KOM ( cạnh huyề - góc nhọn)

=> AA' = KM  ( hai cạnh tương ứng ) (2)

Từ (1) và (2) => ĐPCM

23 tháng 7 2015

Đang nghĩ