cho tam giác ABC , qua trọng tâm G kẻ đường thẳng d sao cho B và C nằm cùng phía đối với d.Gọi AA' ,BB' , CC' là các đường vuông góc kẻ từ A,B,C đến d . chứng minhAA'= BB'+CC'
(trong nâng cao và các chuyên đề toán 7)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn vẽ hình ra thì đọc mới hiểu nha !
a) Ta có : BB' vuông góc với d ( giả thiết ) }
MM' vuông góc với d ( giả thiết ) } => BB' // MM' // CC' ( từ vuông góc đến // )
CC' vuông góc với d ( giả thiết ) }
Xét hình thang BB'C'C ( BB' // C'C - chứng minh trên ) có :
M là trung điểm BC ( AM là trung tuyến - giả thiêt ) }
MM' // BB' ; MM' // CC' ( chứng minh trên ) } => M' là trung điểm BB'CC' ( định lí )
Xét hình thang BB'C'C có :
M là trung điểm BC ( AM là trung tuyến ) }
M' là trung điểm B'C' ( chứng minh trên ) } => MM' là đường trung bình của hình thang BB'C'C ( định lí )
=> MM' = BB' + CC' / 2 ( định lí )
ĐÓ MÌNH CHỈ BIẾT LÀM CÂU A) THÔI, XL BẠN NHA !!!
LẤy K sao cho K là TD BB'
BB" // CC" ( cùng vuông góc với d )
=> B'BCC' là HT
HT B'BCC' có BM = MC ( m là trung điểm)
KB' = KC' ( K là tđ)
=> KM là đg tb => KM = 1/2 ( BB' + CC") => 2KM = BB' + CC' (1)
và KM // BB ; BB" vuông góc với d => KM vuông góc với d
Xetsa tam giác AOA' vuông tại A' và tam giác KOM vuông tại K có
OA = OM ( O là tđ)
AOA' = MOA ( đối đỉnh)
=> tam giác AOA' = KOM ( cạnh huyề - góc nhọn)
=> AA' = KM ( hai cạnh tương ứng ) (2)
Từ (1) và (2) => ĐPCM
Gọi M là trung điểm cạnh BC. Từ M kẻ MN vuông góc với d (N thuộc d)
=> MN là đường trung bình hình thang BB'C'C \(\Rightarrow MN=\frac{BB'+CC'}{2}\)
Mặt khác dễ dàng chứng minh được \(\Delta GA'A~\Delta GNM\left(g.g\right)\)
\(\Rightarrow\frac{AA'}{MN}=\frac{GA}{GM}=2\Rightarrow AA'=2MN=BB'+CC'\)
Vậy \(AA'=BB'+CC'\) (đpcm)