K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

bài nào zậy bạn

8 tháng 8 2017

Câu 3 và caau4 bài giải phương trình nhé

22 tháng 11 2023

Bài 1:

3: ĐKXĐ: x>=1

\(x-\sqrt{x+3+4\sqrt{x-1}}=1\)

=>\(x-\sqrt{x-1+2\cdot\sqrt{x-1}\cdot2+4}=1\)

=>\(x-\sqrt{\left(\sqrt{x-1}+2\right)^2}=1\)

=>\(x-\left|\sqrt{x-1}+2\right|=1\)

=>\(x-\left(\sqrt{x-1}+2\right)=1\)

=>\(x-\sqrt{x-1}-2-1=0\)

=>\(x-1-\sqrt{x-1}-2=0\)

=>\(\left(\sqrt{x-1}\right)^2-2\sqrt{x-1}+\sqrt{x-1}-2=0\)

=>\(\left(\sqrt{x-1}-2\right)\left(\sqrt{x-1}+1\right)=0\)

=>\(\sqrt{x-1}-2=0\)

=>\(\sqrt{x-1}=2\)

=>x-1=4

=>x=5(nhận)

18 tháng 7 2023

\(A=2+2^2+2^3+...+2^{260}\)

\(A=2\left(1+2\right)+2^2\left(1+2\right)+2^3\left(1+2\right)+...+2^{259}\left(1+2\right)\)

\(A=2.3+2^2.3+2^3.3+...+2^{259}.3\)

\(A=3\left(2+2^2+2^3+...+2^{259}\right)⋮3\left(1\right)\)

 

 

\(A=\left(2+2^2+2^3\right)+...+\left(2^{258}+2^{259}+2^{260}\right)\)

\(A=2.\left(1+2+2^2\right)+...+2^{258}.\left(1+2+2^2\right)\)

\(A=2.7+...+2^{258}.7\Rightarrow A=7\left(2+...+2^{258}\right)⋮7\left(2\right)\)

 

\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{257}+2^{258}+2^{259}+2^{260}\right)\)

\(A=2.\left(1+2+2^2+2^3\right)+...+2^{257}.\left(1+2+2^2+2^3\right)\)

\(A=2.15+...+2^{257}.15\Rightarrow A=15\left(2+...+2^{257}\right)⋮5\left(15⋮5\right)\left(3\right)\)

\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow dpcm\)

11 tháng 7 2016

= x3 + 33 -x(x2 -1) -27 =0 ( tổng các lập phuong)

x =0 

CX100%

11 tháng 7 2016

bạn chỉ cần phá hết hằng đẳng thức ra thôi 

8 tháng 11 2021

Bài 6:

Vì \(m^2+1>0\) nên hs nghịch biến trong khoảng \(\left(-\infty;2m\right)\)

Bài 3:

6: \(x< 0\) nên \(y=\sqrt[3]{x}\) nghịch biến

NV
5 tháng 4 2022

\(y'=3x^2-2\)

hệ số góc tiếp tuyến tại điểm có hoành độ \(x_0=-1\) là \(y'\left(-1\right)\)

\(y'\left(-1\right)=3.\left(-1\right)^2-2=1\)