Chứng minh rằng với mọi số nguyên dương n thì:
\(3^{n+2}\)- \(2^{n+2}\)+ \(3^n\)- \(2^n\)chia hết cho n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk thấy bn nên xem lại đề đi. nếu n=1 thì \(6^{2n}+19^n-2^{n+1}\) ko chia hết cho 17
62n+19n-2n+1=36n+19n-2n2=(36n-2n)+(19n-2n)=34k+17j chia het 17
vay bt chia het 17
Ta có:
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=\left(3^n.3^2+3^n.1\right)-\left(2^n.2^2+2^n.1\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\left(9+1\right)-2^{n-1}.2^1\left(4+1\right)\)
\(=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10\)
\(=\left(3^n-2^{n-1}\right).10\text{⋮}10\)
TH1: n chia hết cho 3
=> n2 + n chia hết cho 3
Mà 2 chia 3 dư 2
=> n2 + n + 2 chia 3 dư 2
TH2: n chia 2 dư 1
=> n2 chia 3 dư 1
=> n2 + n chia 3 dư 2
Mà 2 chia 3 dư 2
=> n2 + n + 2 chia 3 dư 1
TH3: n chia 3 dư 2
=> n2 chia 3 dư 1
=> n2 + n chia hết cho 3
Mà 2 chia 3 dư 2
=> n2 + n + 2 chia 3 dư 2
KL: Vậy với mọi số nguyên n thì n2 + n + 2 không chia hết cho 3 (đpcm)
n luôn chia hết cho 2
vì n + 3 x n + 12 luôn là số chẵn
n2+n+2016
=n2+n+1+2015
Ta xét ra 5 trường hợp n2 có chữ số tận cùng là: 1,4,5,6,9.
Bc cuối bạn có thể tự làm nhé.
Chúc may mắn!!!
+) Xét n=5k
=>\(n^2+n+2016=25k^2+5k+2016=5\left(5k^2+k+403\right)+1\) không chia hết cho 5
+) Xét n=5k+1
=>\(n^2+n+2016=\left(5k+1\right)^2+5k+1+2016=25k^2+10k+1+5k+1+2016\)
\(=25k^2+15k+2018=5\left(5k^2+3k+403\right)+3\) không chia hết cho 5
+) Xét n=5k+2
=>\(n^2+n+2016=\left(5k+2\right)^2+5k+2+2016=25k^2+20k+4+5k+2+2016\)
\(=25k^2+25k+2022=5\left(5k^2+5k+404\right)+2\) không chia hết cho 5
+) Xét n=5k+3
=>\(n^2+n+2016=\left(5k+3\right)^2+5k+3+2016=25k^2+30k+9+5k+3+2016\)
\(=25k^2+35k+2028=5\left(5k^2+7k+405\right)+3\) không chia hết cho 5
+) Xét n=5k+4
=>\(n^2+n+2016=\left(5k+4\right)^2+5k+4+2016=25k^2+40k+16+5k+4+2016\)
\(=25k^2+45k+2036=5\left(5k^2+9k+407\right)+1\) không chia hết cho 5
Từ 5 trường hợp trên => đpcm
+ Xét TH1: n chẵn
Suy ra n chia hết 2, do đó n(n + 5) cũng chia hết cho 2.
+ Xét TH2: n lẻ
Suy ra n + 5 chẵn
Do đó (n + 5) chia hết 2
Vậy n(n +5) chia hết cho 2.