K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2022

Giúp mình với

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: BC=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

 

8 tháng 5 2017

Hình thì bạn tự vẽ nha

a)Xét tam giác ABC và tam giá HBA, có:

Góc B chung

Góc BAC = góc BHA 

--> Tam giác ABC ~ Tam giác HBA

b)Xét tam giác AHB và tam giác HCA, có

Góc A - góc H

Góc ABH = Góc AHC

-->tam giác AHB ~ tam giác AHC

-->AH/HB = HC/AH

-->AH.AH = HB.HC

-->AH^2=HB.HC(đpcm)

c)

+) Áp dụng định lý PTG vào tam giác vuông ABC, có :

BC^2=AB^2 + AC^2

<--> 6^2 + 8^2 = 100

--> BC = 10(cm)

+)Vì tam giác ABC ~ Tam giác HBA :

AB/HB = BC/BA = AC/HA

-)AB/HB = BC/BA

= 6/HB =10/6

--> HB = 6.6/10

-->HB = 3,6(cm)

-)BC/BA =AC/HA

=10/6 = 8/HA

--> HA = 6.8/10

--> HA = 4,8 (cm)

d) tính tỉ số diện tích thì bạn ghi tỉ số đồng dạng ra rồi bình phương tỉ số đó lên

là đc tỉ số đồng dạng ạ 

8 tháng 5 2017

xét tam giác ABC có BC2=ab2 + ac2

thay số BC2=62+82

BC2=36+64=100

BC=10(cm)

còn lại mình không bít,xin lỗi

a: Ta có: ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=10^2-6^2=64\)

=>\(AH=\sqrt{64}=8\left(cm\right)\)

b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

=>AH là phân giác của góc BAC

c: Ta có: ΔAHB=ΔAHC

=>BH=CH

Xét ΔBMH vuông tại M và ΔCNH vuông tại N có

BH=CH

\(\widehat{B}=\widehat{C}\)

Do đó: ΔBMH=ΔCNH

d: Xét ΔABO vuông tại B và ΔACO vuông tại C có

AO chung

AB=AC

Do đó: ΔABO=ΔACO

=>OB=OC

=>ΔOBC cân tại O

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Xét ΔABH vuông tại H và ΔCAH vuông tại H có

góc ABH=góc CAH

=>ΔABH đồng dạng với ΔCAH

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

a, \(\Delta\) HBA và \(\Delta\) ABC:

^B - chung

^H = ^A= 900 => tg HBA đồng dạng ABC.

b, Vì tam giác BHA đồng dạng tg ABC:

=> \(\frac{AB}{HB}=\frac{BC}{AB}\Rightarrowđpcm\)

c, ADTC tia phân giác:

\(\Rightarrow\frac{AB}{AC}=\frac{BI}{IC}\Rightarrow\frac{BI}{AB}=\frac{IC}{AC}\)

ADTC dãy tỉ số bằng nhau 

\(\frac{BI}{AB}=\frac{IC}{AC}=\frac{BI+IC}{AB+AC}=\frac{BC}{AB+AC}=\frac{10}{6}+8=\frac{5}{7}\)

\(\Leftrightarrow\hept{\begin{cases}BI=\frac{5}{7}.6=4,3\\IC=\frac{5}{7}.8=5,7\end{cases}}\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: BC=10cm

AH=4,8cm

c: Xét ΔABH vuông tại H có HM là đườg cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay AM/AC=AN/AB

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

AM/AC=AN/AB

Do đó: ΔAMN\(\sim\)ΔACB

10 tháng 3 2022

\(a)\) Xét \(\Delta ABC\) và \(\Delta HBA:\)

\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\\ \widehat{ABC}chung.\\ \Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)

\(b)\) Xét \(\Delta ABC\) vuông tại A:

\(+)BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=6^2+8^2=36+64=100.\\ \Rightarrow BC=10\left(cm\right).\)\(+)AH.BC=AB.AC\) (Hệ thức lượng).\(\Rightarrow AH.10=6.8.\\ \Rightarrow AH=4,8\left(cm\right).\)\(c)\) Xét \(\Delta ABH\) vuông tại H, đường cao MH:\(AH^2=AM.AB\) (Hệ thức lượng). \(\left(1\right)\)Xét \(\Delta ACH\) vuông tại H, đường cao NH:\(AH^2=AN.AC\) (Hệ thức lượng). \(\left(2\right)\)Từ \(\left(1\right);\left(2\right)\Rightarrow AM.AB=AN.AC.\)Xét \(\Delta ACB\) và \(\Delta AMN:\)\(\Rightarrow\dfrac{AB}{AN}=\dfrac{AC}{AM}.\)\(\widehat{A}chung.\\ \dfrac{AB}{AN}=\dfrac{AC}{AM}\left(cmt\right).\\ \Rightarrow\Delta ACB\sim\Delta AMN\left(c-g-c\right).\)