Tìm cặp số nguyên x, y thỏa mãn:
\(x+y+xy=3\)
Mình đang cần gấp, giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét 2 trường hợp
th1:(x-2)2=-4
(x-2)2=-22
=x-2=-2
=>x=0
th2:y-3=-4
=>y=-1
\(xy-2x-3y+1=0\) \(\left(\text{*}\right)\)
\(\Leftrightarrow\) \(xy-3y=2x-1\)
\(\Leftrightarrow\) \(\left(x-3\right)y=2x-1\)
\(\Leftrightarrow\) \(y=\frac{2x-1}{x-3}\)
\(\Leftrightarrow\) \(y=\frac{2x-6+5}{x-3}\)
\(\Leftrightarrow\) \(y=2+\frac{5}{x-3}\)
Vì \(y\in Z\) (theo giả thiết) nên \(\frac{5}{x-3}\) phải là số nguyên hay \(5\) phải chia hết cho \(x-3\)
\(\Leftrightarrow\) \(x-3\in\left\{-5;-1;1;5\right\}\)
Khi đó, xét \(x-3\) với \(4\) trường hợp trên, ta có:
\(\text{+) }\) Với \(x-3=-5\) thì \(x=-2\) \(\Rightarrow\) \(y=1\)
\(\text{+) }\) Với \(x-3=-1\) thì \(x=2\) \(\Rightarrow\) \(y=-3\)
\(\text{+) }\) Với \(x-3=1\) thì \(x=4\) \(\Rightarrow\) \(y=7\)
\(\text{+) }\) Với \(x-3=5\) thì \(x=8\) \(\Rightarrow\) \(y=3\)
Vây, nghiệm nguyên của phương trình \(\left(\text{*}\right)\) là \(\left(x;y\right)=\left\{\left(-2;1\right),\left(2;-3\right),\left(4;7\right),\left(8;3\right)\right\}\)
Trước hết ta thấy rằng nếu có một trong hai số x,y chẵn thì xy chẵn còn 2x+2y+1 là lẻ, do đó 2x+2y+1 không thể chia hết cho xy.
x+xy = 3-y
x(1+y) =3 - y => x =\(\frac{3-y}{1+y}\)
nếu y = 1 thi x = 1
y = 2 thì x = 1/3 (loại)
y = 3 => x = 0
y = -2 => x = -5
y = -3 => x = -3
Ta có : x + y + xy + 1 = 4
=> x.(y+1) + (y+1) = 4
=> (x+1).(y+1) = 4
Vì x,y nguyên nên ta xét các hệ phương trình :
x + 1 = 4 và y + 1 = 1 => x = 3, y = 0
x + 1 = -4 và y + 1 = -1 => x = -5, y = -2
x + 1 = 1 và y +1 = 4 => x = 0, y = 3
x + 1 = -1, y + 1 = -4 => x = -2, y = -5
x + 1 = 2, y + 1 = 2 => x = 1, y = 1
x + 1 = -2, y + 1 = -2 => x = -3, y = -3
Vậy (x,y) = .......( tự điền nốt nha) =) =)