Cho tam giác ABC, đường phân giác AD. Biết AB = 16 cm, AC = 12 cm.
a. Tính tỉ số DB và DC.
b. Từ D kẻ đường thẳng song song với AC cắt AB tại H. Biết DB = 4 cm, DC = 3 cm. Tính DH ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác AHB và tam giác AHE ( đều vuông tại H )
AH là cạnh chung
\(\widehat{BAH}=\widehat{HAE}\)(Vì AD là tia phân giác)
\(\Rightarrow\Delta AHB=\Delta AHE\)(cạnh góc vuông và góc nhọn kề cạnh ấy)
b)Vì AH vừa là tia phân giác vừa là tia vuông góc
\(\Rightarrow\Delta ABE\) là tam giác cân mà lại có góc BAE bằng 600
\(\Rightarrow\Delta ABE\) là tam giác đều\(\Rightarrow\)AH cũng là đường trung tuyến \(\Rightarrow\)BH=HE(1)
Vì KH//AB\(\Rightarrow\widehat{BAE}=\widehat{HKE};\widehat{KHE}=\widehat{ABE}\)
Mà góc KEH chung
\(\Rightarrow\Delta KHE\) là tam giác đều
\(\Rightarrow KH=HE\left(2\right)\)
Từ (1) và (2) suy ra:KH=HB=HE
Theo định lý nếu trong tam giác cạnh đối diện với cạnh huyền bằng nửa cạnh huyền thì tam giác đó vuông
\(\Rightarrow\Delta BKE\) vuông tại K
\(\Rightarrow\widehat{BKE}=90^0\)
1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600
=> tg AMI đều => AM = AI = 1/2AN
Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)
Từ (1) và (2) bn suy ra nhé
1b) Tam giác AMN vuông tại M có góc A = 60o
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2 /MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o
=> tg AMI đều => AM = AI = 1/2AN
Từ (1) và (2) bn suy ra nhé
Xét ΔBAC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{12}=\dfrac{CD}{20}\)
mà BD+CD=28cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{12}=\dfrac{CD}{20}=\dfrac{BD+CD}{12+20}=\dfrac{28}{32}=\dfrac{7}{8}\)
Do đó: BD=10,5cm; CD=17,5cm
Xét ΔBAC có
DE//AB
nên \(\dfrac{DE}{AB}=\dfrac{CD}{BC}\)
\(\Leftrightarrow DE=\dfrac{17.5}{28}\cdot12=7.5\left(cm\right)\)
a. -△ABC có AD là phân giác \(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{16}{12}=\dfrac{4}{3}\)
b. -△ABC có DH//AC \(\Rightarrow\dfrac{DH}{AC}=\dfrac{BD}{BC}=\dfrac{BD}{BD+CD}\)
\(\Rightarrow\dfrac{DH}{12}=\dfrac{4}{4+3}\Rightarrow DH=\dfrac{12.4}{4+3}=\dfrac{48}{7}\left(cm\right)\)