K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔMNH vuông tại H và ΔNQP vuông tại P có 

\(\widehat{MNH}=\widehat{NQP}\)(hai góc so le trong, MN//QP)

Do đó: ΔMNH\(\sim\)ΔNQP(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNQ vuông tại M có MH là đường cao ứng với cạnh huyền NQ, ta được:

\(NH\cdot NQ=MN^2\)

2: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHN vuông tại H có HD là đường cao ứng với cạnh huyền MN, ta được:

\(MD\cdot MN=MH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHP vuông tại H có HE là đường cao ứng với cạnh huyền MP, ta được:

\(ME\cdot MP=MH^2\left(2\right)\)

Từ (1) và (2) suy ra \(MD\cdot MN=ME\cdot MP\)

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Hình vẽ:undefined

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

a) Xét tam giác $EDM$ và $EKQ$ có:

$\widehat{E}$ chung

$\widehat{EDM}=\widehat{EKQ}$ (hai góc đồng vị)

$\Rightarrow \triangle EDM\sim \triangle EKQ$ (g.g)

b) 

$MD\parallel QK$ nên theo định lý Talet:

$\frac{EM}{EQ}=\frac{ED}{EK}\Rightarrow EM.EK=EQ.ED$

 

28 tháng 3 2022

có M

28 tháng 3 2022

chưa hỉu cái đề lắm

a: \(NQ=\sqrt{16^2+12^2}=20\left(cm\right)\)

NP/NQ=12/20=3/5

b: Xét ΔMHN vuông tại H và ΔNPQ vuông tại P co

góc MNH=góc NQP

=>ΔMHN đồg dạng với ΔNPQ

\(MH=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

c: Xét ΔMQN vuông tại M có MH là đường cao

nên MQ^2=QH*QN

a: Xét ΔMNP có

E là trung điểm của MN

F là trung điểm của NP

Do đó: EF là đường trung bình của ΔMNP

Suy ra: EF//MP và EF=MP/2(1)

Xét ΔMQP có

K là trung điểm của MQ

H là trung điểm của QP

Do đó: KH là đường trung bình của ΔMQP

Suy ra: KH//MP và KH=MP/2(2)

Xét ΔMNQ có

E là trung điểm của MN

K là trung điểm của MQ

Do đó: EK là đường trung bình của ΔMNQ

Suy ra: EK=NQ/2=MP/2(3)

Từ (2) và (3) suy ra KH=EK(4)

Từ (1) và (2) suy ra EF//KH và EF=KH(5)

Từ (4) và (5) suy ra EFHK là hình thoi

a: Xét tứ giác MDHE có

\(\widehat{MDH}=\widehat{MEH}=\widehat{EMD}=90^0\)

=>MDHE là hình chữ nhật

b: MDHE là hình chữ nhật

=>MH cắt DE tại trung điểm của mỗi đường

mà O là trung điểm của MH

nên O là trung điểm của DE

=>DO=OE

c: ΔHDN vuông tại D

mà DI là đường trung tuyến

nên DI=HI=IN

=>ΔIHD cân tại I

ΔPEH vuông tại E

mà EK là đường trung tuyến

nên EK=KP=KH

=>ΔKEH cân tại K

\(\widehat{KED}=\widehat{KEH}+\widehat{DEH}\)

\(=\widehat{KHE}+\widehat{HMD}\)

\(=\widehat{HMD}+\widehat{HND}=90^0\)

=>KE vuông góc ED(1)

\(\widehat{IDE}=\widehat{IDH}+\widehat{EDH}\)

\(=\widehat{IHD}+\widehat{EMH}\)

\(=\widehat{HPM}+\widehat{HMP}=90^0\)

=>ID vuông góc DE(2)

Từ (1) và (2) suy ra DI//EK

8 tháng 11 2023

cảm ơn nha bạn