Cho (C) : (x − 1)2 + (y + 2)2 = 25 và d : 3x − 4y + m − 3 = 0. (a) Tìm m sao cho d là một tiếp tuyến của (C). (b) Tìm m để trên d tồn tại điểm K sao cho 2 tiếp tuyến với đường tròn từ K đều tạo với d góc 60◦
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: x^2+y^2+6x-2y=0
=>x^2+6x+9+y^2-2y+1=10
=>(x+3)^2+(y-1)^2=10
=>R=căn 10; I(-3;1)
Vì (d1)//(d) nên (d1): x-3y+c=0
Theo đề, ta có: d(I;(d1))=căn 10
=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)
=>|c-6|=10
=>c=16 hoặc c=-4
Gọi O là tâm của (C) thì dễ thấy \(O\left(2;-1\right)\) và bán kính \(R=5\)
Ta tính khoảng cách từ O tới (d):
\(d\left(O,d\right)=\dfrac{\left|3.2-4\left(-1\right)+m\right|}{\sqrt{3^2+\left(-4\right)^2}}=\dfrac{\left|10+m\right|}{5}\)
Để (d) là tiếp tuyến của (C) thì \(d\left(O,d\right)=R\) \(\Leftrightarrow\dfrac{\left|10+m\right|}{5}=5\) \(\Leftrightarrow\left|m+10\right|=25\). Nếu \(m\ge-10\) thì suy ra \(m=15\) (tm), nếu \(m< -10\) thì suy ra \(m=-35\) (tm)
Vậy để (d) là tiếp tuyến của (C) thì \(m=15\) hoặc \(m=-35\).