Tìm các số tự nhiên x,y,z thỏa mãn đẳng thức 2006^x=2005^y+2004^z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz=0\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=x^2+y^2+z^2=0\) (do xy + yz + xz = 0)
Ta lại thấy \(x^2;y^2;z^2\ge0\forall x;y;z\) nên \(x^2+y^2+z^2\ge0\forall x;y;z\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=0\) thay vào S ta được :
\(S=\left(-1\right)^{2005}+\left(-1\right)^{2006}+1^{2007}=1\)
bài này khó quá mình ko biết giải.có bạn nào biết giải chỉ mình với
Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố
Vậy x chỉ là số chẵn mà nguyên tố => x= 2
Với y=2 => z= 5 thỏa đk đề bài
Nếu y>2 => y lẻ (vì y nguyên tố)
=> y =2k +1
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m
Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3
=>z chia hết cho 3 không thỏa đk
Vậy x=y=2; z= 5 là duy nhất
Ta có: \(2006^x=2005^y+2004^z>1\)
\(\Rightarrow x\ge1\)
Vì \(2006^x\) là số chẵn, \(2005^y\) là số lẻ
nên \(2004^z\) là số lẻ
\(\Rightarrow z=0\)
Lúc đó, ta có phương trình: \(2006^x=2005^y+1\)
Lại có: \(\hept{\begin{cases}2005\equiv1\left(mod4\right)\Rightarrow2005^y+1\equiv2\left(mod4\right)♣\\2006=4m+2\Rightarrow2006^x=4k+2^x\end{cases}}\)
Với \(x\ge2\) thì \(2006^x\) chia hết cho 4, mâu thuẫn với ♣.
Vậy \(x=y=1;z=0\)
Có 1 trường hợp là \(x=1;y=1;z=0\)