K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2022

-Sửa đề: x,y nguyên.

\(x-\dfrac{1}{y}-\dfrac{4}{xy}=-1\left(x\ne0;y\ne0;x\ne-1\right)\)

\(\Rightarrow x-\dfrac{1}{y}-\dfrac{4}{xy}+1=0\)

\(\Rightarrow\dfrac{x^2y}{xy}-\dfrac{x}{xy}-\dfrac{4}{xy}+\dfrac{xy}{xy}=0\)

\(\Rightarrow x^2y-x-4+xy=0\)

\(\Rightarrow xy\left(x+1\right)=x+4\)

\(\Rightarrow y=\dfrac{x+4}{x\left(x+1\right)}\)

-Vì x,y nguyên: 

\(\Rightarrow\left(x+4\right)⋮\left[x\left(x+1\right)\right]\)

\(\Rightarrow\left(x+4\right)⋮x\) và \(\left(x+4\right)⋮\left(x+1\right)\)

\(\Rightarrow4⋮x\) và \(\left(x+1+3\right)⋮\left(x+1\right)\)

\(\Rightarrow x\in\left\{1;-1;2;-2;4;-4\right\}\) và \(3⋮\left(x+1\right)\)

\(\Rightarrow x\in\left\{1;-1;2;-2;4;-4\right\}\) và \(x+1\in\left\{1;-1;3;-3\right\}\)

 

\(\Rightarrow x\in\left\{1;-1;2;-2;4;-4\right\}\) và \(x\in\left\{0;-2;2;-4\right\}\)

\(\Rightarrow x\in\left\{2;-2;-4\right\}\)

*\(x=2\Rightarrow y=\dfrac{2+4}{2.\left(2+1\right)}=1\)

\(x=-2\Rightarrow y=\dfrac{-2+4}{-2.\left(-2+1\right)}=1\)

\(x=-4\Rightarrow y=\dfrac{-4+4}{-4.\left(-4+1\right)}=0\left(loại\right)\)

-Vậy các cặp số (x,y) là: \(\left(2,1\right);\left(-2,1\right)\)

 

8 tháng 4 2022

\(x^2+4x+5=x^2+4x+4+1\)

\(=\left(x+2\right)^2+1\)

Ta có:

\(\left(x+2\right)^2\text{≡}0,1\left(mod3\right)\)

\(1\text{≡}1\left(mod3\right)\)

\(\Rightarrow\left(x+2\right)^2+1\text{≡}1,2\left(mod3\right)\)

\(\Rightarrow\left(x+2\right)^2+1\) không chia hết cho 3

\(\Rightarrow x^2+4x+5\) không chia hết cho 3

26 tháng 3 2022

Ta có:\(\left|x-1\right|\ge0;\forall x\)

        \(\left|x+2\right|\ge0;\forall x\)

          \(\left|x-3\right|\ge0;\forall x\)

           \(\left|x+4\right|\ge0;\forall x\) ......

Cộng tất cả ta được:

\(\left|x-1\right|+\left|x+2\right|+\left|x-3\right|+\left|x+4\right|+...+\left|x-9\right|\ge0\)

\(\Rightarrow Min_T=0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}x=1\\x=-2\\x=3\\x=-4.....\end{matrix}\right.\)

26 tháng 3 2022

Tìm x nữa

=>x^3+2x^2+2x-9=0

=>x=1,37

12 tháng 3 2021

\(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+zx}+\dfrac{z}{z^2+xy}\le\dfrac{x}{2\sqrt{x^2yz}}+\dfrac{y}{2\sqrt{y^2zx}}+\dfrac{z}{2\sqrt{z^2xy}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}+\dfrac{1}{\sqrt{xy}}\right)\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = z = 1.

20 tháng 3 2021

sau 12(1√yz+1√zx+1√xy)≤12(1x+1y+1z)=3/2 vậy ạ

18 tháng 8 2023

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}=4\left(1\right)\)

Theo Bất đẳng thức Cauchy cho các cặp số \(\left(x^2;\dfrac{1}{x^2}\right);\left(x^2;\dfrac{y^2}{4}\right)\)

\(\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge2.\dfrac{1}{2}xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge xy\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}\ge2+xy\)

\(\Leftrightarrow4\ge2+xy\)

\(\Leftrightarrow xy\le2\left(x;y\inℤ\right)\)

\(\Leftrightarrow Max\left(xy\right)=2\)

Dấu "=" xảy ra khi

\(xy\in\left\{-1;1;-2;2\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-2\right);\left(1;2\right);\left(-2;-1\right);\left(2;1\right)\right\}\) thỏa mãn đề bài

17 tháng 9 2023

hình như dấu "=" xảy ra khi x^2 = 1/x^2 với x^2 = y^2/4 mà bạn nhỉ

AH
Akai Haruma
Giáo viên
27 tháng 4 2022

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$

$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$

Áp dụng BĐT AM-GM:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

Cộng 2 BĐT trên lại:

$P\geq 16+8=24$

Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$

AH
Akai Haruma
Giáo viên
27 tháng 4 2022

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$

$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$

Áp dụng BĐT AM-GM:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

Cộng 2 BĐT trên lại:

$P\geq 16+8=24$

Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$

NV
9 tháng 4 2021

\(6xy=x+y\ge2\sqrt[]{xy}\Rightarrow\sqrt{xy}\ge\dfrac{1}{3}\Rightarrow xy\ge\dfrac{1}{9}\Rightarrow\dfrac{1}{xy}\le9\)

\(M=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1+\dfrac{xy+x}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{x+1}{1-xy}}{\dfrac{x+1}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{1}{1-xy}+\dfrac{1}{1+xy}}{\dfrac{1}{1-xy}-\dfrac{1}{1+xy}}\)

\(M=\dfrac{1+xy+1-xy}{1+xy-1+xy}=\dfrac{2}{2xy}=\dfrac{1}{xy}\le9\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{3}\)