K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

A B C H K

Từ A kẻ đường cao AH, H thuộc BC. Từ B kẻ đường cao BK, K thuộc AC

Ta có: \(\sin A=\frac{BK}{AB};\sin B=\frac{AH}{AB};\sin C=\frac{AH}{AC}\)

\(\Rightarrow\frac{AB}{\sin C}=\frac{AB}{\frac{AH}{AC}}=\frac{AB.AC}{AH}\)

\(\Rightarrow\frac{AC}{\sin B}=\frac{AC}{\frac{AH}{AB}}=\frac{AB.AC}{AH}\)

\(\Rightarrow\frac{c}{\sin C}=\frac{b}{\sin B}1\)

Lại có:

\(BK=\sin C.BC\Rightarrow\frac{BC}{\sin A}=\frac{BC}{\frac{BK}{AB}}=\frac{BC.AB}{BK}=\frac{AB.BC}{\sin C.BC}=\frac{AB}{\sin C}\)

\(\Rightarrow\frac{a}{\sin A}=\frac{c}{\sin C}2\)

Từ 1 và 2, ta có:

\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)

\(\RightarrowĐPCM\)

19 tháng 1 2021

\(S_{ABC}=\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}=\frac{abc}{4R}\)

+ Từ \(\frac{bc\sin A}{2}=\frac{ac\sin B}{2}\Rightarrow b\sin A=a\sin B\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\left(1\right)\)

+ Từ \(\frac{ac\sin B}{2}=\frac{ab\sin C}{2}\Rightarrow c\sin B=b\sin C\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(2\right)\)

+ Từ \(\frac{bc\sin A}{2}=\frac{abc}{4R}\Rightarrow\sin A=\frac{a}{2R}\Rightarrow\frac{a}{\sin A}=2R\left(3\right)\)

Từ (1) (2) (3) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\left(dpcm\right)\)

A B C H K

Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)

Ta có : sinA=BKAB ; sinB=AHAB ; sinC=AHAC

⇒ABsinC=ABAHAC=AB.ACAH ; ACsinB=ACAHAB=AB.ACAH

⇒csinC=bsinB (1)

Lại có : BK=sinC.BC⇒BCsinA=BCBKAB=BC.ABBK=AB.BCsinC.BC=ABsinC

⇒asinA=csinC (2)

Từ (1) và (2) ta có : asinA=bsinB=csinC (Đpcm)

5 tháng 6 2018

Kẽ đường cao AH

\(\Rightarrow\hept{\begin{cases}sinB=\frac{AH}{c}\\sinC=\frac{AH}{b}\end{cases}}\)

\(\Rightarrow AH=c.sinB=b.sinC\)

\(\Rightarrow\frac{b}{sinB}=\frac{c}{sinC}\)

Tương tự ta cũng có

\(\frac{b}{sinB}=\frac{a}{sinA}\)

\(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)

19 tháng 10 2017

Ta có: 

\(\frac{a}{sinA}=\frac{a}{\frac{h_b}{c}}=\frac{ac}{h_b}=\frac{ac}{\frac{2S}{b}}=\frac{abc}{S}\left(1\right)\)

Tương tự ta cũng có:

\(\hept{\begin{cases}\frac{b}{sinB}=\frac{abc}{2S}\left(2\right)\\\frac{c}{sinC}=\frac{abc}{2S}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) \(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)

18 tháng 10 2017

k mik mik giai cho

17 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

17 tháng 9 2018

Tự vẽ hình babe :))

Kẻ  \(BD\perp AC\);  \(CE\perp AB\)

Xét  \(\Delta ADB\)có  \(\sin A=\frac{BD}{AB}\) \(\Rightarrow\frac{a}{\sin A}=BC\div\frac{BD}{AB}=\frac{BC\times AB}{BD}\left(1\right)\)

Xét  \(\Delta AEC\)có  \(\sin A=\frac{EC}{AC}\) \(\Rightarrow\frac{a}{\sin A}=BC\div\frac{EC}{AC}=\frac{CA\times BC}{EC}\left(2\right)\)

Xét  \(\Delta BEC\)có  \(\sin B=\frac{EC}{BC}\) \(\Rightarrow\frac{b}{\sin B}=CA\div\frac{EC}{BC}=\frac{CA\times BC}{EC}\left(3\right)\)

Xét  \(\Delta BDC\)có  \(\sin C=\frac{DB}{BC}\)\(\Rightarrow\frac{c}{\sin C}=AB\div\frac{BD}{BC}=\frac{AB\times BC}{BD}\left(4\right)\)

Từ (1); (2); (3) và (4)  \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\left(đpcm\right)\)

1 tháng 8 2019

Kẻ đg cao BH

a) + \(sinA=\frac{BH}{AB}=\frac{BH}{c}\)

+ \(S_{ABC}=\frac{1}{2}BH\cdot AC=\frac{BH\cdot AC\cdot AB}{2AB}\)

\(=\frac{bc\cdot sinA}{2}\)

b) + \(sinC=\frac{BH}{BC}=\frac{BH}{a}\)

\(\Rightarrow\frac{sinA}{sinC}=\frac{\frac{BH}{c}}{\frac{BH}{a}}=\frac{a}{c}\Rightarrow\frac{a}{sinA}=\frac{c}{sinC}\)

+ Tương tự : \(\frac{a}{b}=\frac{sinA}{sinB}\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}\)

Do đó: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)

4 tháng 8 2016

đặt AB=c, BC=a, AC=c.
để chứng minh bđt trên ta sẽ áp dụng công thức: \(S_{\Delta ABC}=\frac{1}{2}.a.b.sinC=\frac{1}{2}.b.c.sinA=\frac{1}{2}.a.c.sinB\)
ta có: \(\frac{sinA}{sinB+sinC}+\frac{sinB}{sinA+sinC}+\frac{sinC}{sinA+sinB}\)
       \(=\frac{a.b.c.sinA}{a.b.c.sinB+a.b.c.sinC}+\frac{a.b.c.sinB}{a.b.c.sinA+a.b.c.sinC}+\frac{a.b.c.sinC}{a.b.c.sinA+a.b.c.sinB}\)
        ;\(=\frac{2S_{\Delta ABC}.a}{2S_{\Delta ABC}.b+2S_{\Delta ABC}.c}+\frac{2S_{\Delta ABC}.b}{2.S_{\Delta ABC}.c+2.S_{\Delta ABC}.b}+\frac{2S_{\Delta ABC}.c}{2S_{\Delta ABC}.b+2S_{\Delta ABC}.a}\)
         \(=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\).
Ta có: \(\frac{a}{b+c}>\frac{a}{a+b+c};\frac{b}{a+c}>\frac{b}{a+b+c};\frac{c}{a+b}>\frac{c}{a+b+c}\)
nên \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1.\)
Ta sẽ chứng minh bđt phụ: \(\frac{a}{b+c}< \frac{2a}{a+b+c}\left(1\right)\)
Thật vậy: \(\left(1\right)\Leftrightarrow a^2< a\left(b+c\right)\Leftrightarrow a< b+c\)(đúng vì a,b,c là độ dài 3 cạnh của tam giác).
tương tự: \(\frac{b}{a+c}< \frac{2b}{a+b+c};\frac{c}{a+b}< \frac{2c}{a+b+c}\).
suy ra: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a}{b+c}+\frac{2b}{a+c}+\frac{2c}{a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\).
vậy bất đẳng thức đã được chứng minh.
 

4 tháng 8 2016

câu này khó ghê

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Theo định lý sin: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \to b = \frac{{a.\sin B}}{{\sin A}}\) thay vào \(S = \frac{1}{2}ab.\sin C\) ta có:

\(S = \frac{1}{2}ab.\sin C = \frac{1}{2}a.\frac{{a.\sin B}}{{\sin A}}.sin C = \frac{{{a^2}\sin B\sin C}}{{2\sin A}}\) (đpcm)

b) Ta có: \(\hat A + \hat B + \hat C = {180^0} \Rightarrow \hat A = {180^0} - {75^0} - {45^0} = {60^0}\)

\(S = \frac{{{a^2}\sin B\sin C}}{{2\sin A}} = \frac{{{{12}^2}.\sin {{75}^0}.\sin {{45}^0}}}{{2.\sin {{60}^0}}} = \frac{{144.\frac{1}{2}.\left( {\cos {{30}^0} - \cos {{120}^0}} \right)}}{{2.\frac{{\sqrt 3 }}{2}\;}} = \frac{{72.(\frac{{\sqrt 3 }}{2}-\frac{{-1 }}{2}})}{{\sqrt 3 }} = 36+12\sqrt 3 \)