Cho ΔABC vuông tại A (AC > AB), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
C/m: a) ΔABC ∼ ΔHAC.
b) EC . AC = DC . BC.
c) ΔBEC ∼ ΔADC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
a) △ABC∽△HAC△ABC∽△HAC
b) EC.AC=DC.BCEC.AC=DC.BC
c) △BEC∽△ADC△BEC∽△ADC, △ABE△ABE vuông cân tại A
Giải thích các bước giải:
a)
Xét △ABC△ABC và △HAC△HAC:
ˆBAC=ˆAHC(=90o)BAC^=AHC^(=90o)
ˆCC^: chung
→△ABC∽△HAC→△ABC∽△HAC (g.g)
b)
Xét △DEC△DEC và △ABC△ABC:
ˆEDC=ˆBAC(=90o)EDC^=BAC^(=90o)
ˆCC^: chung
→△DEC∽△ABC→△DEC∽△ABC (g.g)
→DCEC=ACBC→EC.AC=DC.BC→DCEC=ACBC→EC.AC=DC.BC
c)
Xét △BEC△BEC và △ADC△ADC:
DCEC=ACBCDCEC=ACBC (cmt)
ˆCC^: chung
→△BEC∽△ADC→△BEC∽△ADC (c.g.c)
Ta có: AH⊥BC,ED⊥BCAH⊥BC,ED⊥BC (gt)
→AH//ED→AH//ED
△AHC△AHC có AH//EDAH//ED (cmt)
→AEAC=HDHC→AEAC=HDHC (định lý Talet)
Mà HD=HAHD=HA (gt)
→AEAC=HAHC→AEAC=HAHC
Lại có: △ABC∽△HAC△ABC∽△HAC (cmt)
→ABAC=HAHC→ABAC=HAHC
→AEAC=ABAC→AE=AB→AEAC=ABAC→AE=AB
→△ABE→△ABE cân tại A
Có: AB⊥AE(AB⊥AC)AB⊥AE(AB⊥AC)
→△ABE→△ABE vuông cân tại A
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
Do đó: ΔABC\(\sim\)ΔHAC
b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
DO đó: ΔCDE\(\sim\)ΔCAB
Suy ra: CD/CA=CE/CB
hay \(CD\cdot CB=CA\cdot CE\)
a: Xét tứ giác HDEI có
\(\widehat{EDH}=\widehat{DHI}=\widehat{EIH}=90^0\)
=>HDEI là hình chữ nhật
b:
Xét ΔAHD có \(\widehat{AHD}=90^0\) và HA=HD
nên ΔAHD vuông cân tại H
=>\(\widehat{ADH}=45^0\)
Xét tứ giác AEDB có
\(\widehat{EAB}+\widehat{EDB}=90^0+90^0=180^0\)
=>AEDB là tứ giác nội tiếp
=>\(\widehat{AEB}=\widehat{ADB}=\widehat{ADH}=45^0\)
Xét ΔAEB vuông tại A có \(\widehat{AEB}=45^0\)
nên ΔAEB vuông cân tại A
=>AE=AB
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD*CB=CA*CE
c: Xét ΔBEC và ΔADC có
CB/CA=CE/CD
góc C chung
=>ΔBEC đồg dạng vơi ΔADC
a: AB=8(cm)
b: Xét ΔBAH vuông tại A và ΔBDH vuông tại D có
BA=BD
BH chung
Do đó:ΔBAH=ΔBDH
Suy ra: HA=HD
c: Xét ΔAHK vuông tại A và ΔDHC vuông tại D có
HA=HD
\(\widehat{AHK}=\widehat{DHC}\)
Do đó: ΔAHK=ΔDHC
Suy ra: AK=DC
Ta có: BA+AK=BK
BD+DC=BC
mà BA=BD
và AK=DC
nên BC=BK