K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2022

Đáp án:

a) △ABC∽△HAC△ABC∽△HAC

b) EC.AC=DC.BCEC.AC=DC.BC

c) △BEC∽△ADC△BEC∽△ADC△ABE△ABE vuông cân tại A

Giải thích các bước giải:

a)

Xét △ABC△ABC và △HAC△HAC:

ˆBAC=ˆAHC(=90o)BAC^=AHC^(=90o)

ˆCC^: chung

→△ABC∽△HAC→△ABC∽△HAC (g.g)

b)

Xét △DEC△DEC và △ABC△ABC:

ˆEDC=ˆBAC(=90o)EDC^=BAC^(=90o)

ˆCC^: chung

→△DEC∽△ABC→△DEC∽△ABC (g.g)

→DCEC=ACBC→EC.AC=DC.BC→DCEC=ACBC→EC.AC=DC.BC

c)

Xét △BEC△BEC và △ADC△ADC:

DCEC=ACBCDCEC=ACBC (cmt)

ˆCC^: chung

→△BEC∽△ADC→△BEC∽△ADC (c.g.c)

Ta có: AH⊥BC,ED⊥BCAH⊥BC,ED⊥BC (gt)

→AH//ED→AH//ED

△AHC△AHC có AH//EDAH//ED (cmt)

→AEAC=HDHC→AEAC=HDHC (định lý Talet)

Mà HD=HAHD=HA (gt)

→AEAC=HAHC→AEAC=HAHC

Lại có: △ABC∽△HAC△ABC∽△HAC (cmt)

→ABAC=HAHC→ABAC=HAHC

→AEAC=ABAC→AE=AB→AEAC=ABAC→AE=AB

→△ABE→△ABE cân tại A

Có: AB⊥AE(AB⊥AC)AB⊥AE(AB⊥AC)

→△ABE→△ABE vuông cân tại A

image 

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

Do đó: ΔABC\(\sim\)ΔHAC

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

DO đó: ΔCDE\(\sim\)ΔCAB

Suy ra: CD/CA=CE/CB

hay \(CD\cdot CB=CA\cdot CE\)

a: Xét tứ giác HDEI có

\(\widehat{EDH}=\widehat{DHI}=\widehat{EIH}=90^0\)

=>HDEI là hình chữ nhật

b:

Xét ΔAHD có \(\widehat{AHD}=90^0\) và HA=HD

nên ΔAHD vuông cân tại H

=>\(\widehat{ADH}=45^0\)

Xét tứ giác AEDB có 

\(\widehat{EAB}+\widehat{EDB}=90^0+90^0=180^0\)

=>AEDB là tứ giác nội tiếp

=>\(\widehat{AEB}=\widehat{ADB}=\widehat{ADH}=45^0\)

Xét ΔAEB vuông tại A có \(\widehat{AEB}=45^0\)

nên ΔAEB vuông cân tại A

=>AE=AB

 

7 tháng 12 2023

cho mình xin cái hình đc ko

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD*CB=CA*CE

c: Xét ΔBEC và ΔADC có

CB/CA=CE/CD

góc C chung

=>ΔBEC đồg dạng vơi ΔADC

5 tháng 3 2023

c.ơn ạ

 

25 tháng 3 2022

a,Xét \(\Delta HBA\) và \(\Delta ABC\) có :

\(\widehat{BHA}=\widehat{BAC}=90^0\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{BH}{AB}\)

\(\Rightarrow AB^2=BH.BC\)

a: AB=8(cm)

b: Xét ΔBAH vuông tại A và ΔBDH vuông tại D có 

BA=BD

BH chung

Do đó:ΔBAH=ΔBDH

Suy ra: HA=HD

c: Xét ΔAHK vuông tại A và ΔDHC vuông tại D có 

HA=HD

\(\widehat{AHK}=\widehat{DHC}\)

Do đó: ΔAHK=ΔDHC

Suy ra: AK=DC

Ta có: BA+AK=BK

BD+DC=BC

mà BA=BD

và AK=DC

nên BC=BK