Cho parabol (P): y = − x2 và đường thẳng (d): y = (3 − m)x + 2 − 2m (m là tham số).
a) Chứng minh rằng với m ≠ −1 thì (d) luôn cắt (P) tại 2 điểm phân biệt A, B.
b) Gọi yA, yB lần lượt là tung độ các điểm A, B. Tìm m để |yA − yB| = 2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nên ta có : \(x_1y_1+x_2y_2=0\Leftrightarrow x_1^3+x_2^3=0\)\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)=0\)\(\Leftrightarrow\left(2m-1\right)\left[\left(2m-1\right)^2-3m+6\right]=0\)
2. Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x + m2 + 2m (m là tham số, m ∈ R )
a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B?
b) Gọi H và K lần lượt là hình chiếu của A và B trên trục hoành.
Tìm m sao cho: OH2 + OK2 = 6 mọi người hướng dẫ mk ý b vs
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=2\left(m-1\right)x+5-2m\)
\(\Leftrightarrow x^2-2\left(m-1\right)x-5+2m=0\)
Áp dụng hệ thức Vi-et, ta được:
\(x_1+x_2=2\left(m-1\right)\)
Ta có: \(x_1+x_2=6\)
\(\Leftrightarrow2\left(m-1\right)=6\)
\(\Leftrightarrow m-1=3\)
hay m=4
Vậy: m=4
a: PTHĐGĐ là:
x^2-2x-|m|-1=0
a*c=-|m|-1<0
=>(d)luôn cắt (P) tại hai điểm phân biệt
b: Bạn bổ sung lại đề đi bạn
b) Phương trình hoành độ giao điểm của d và (P): − x 2 = 2 m x − 1 ⇔ x 2 + 2 m x − 1 = 0
Phương trình (*) có ∆’ = m2 + 1 > 0 ⇒ (*) luôn có hai nghiệm phân biệt x1, x2 ∀ m hay d luôn cắt (P) tại hai điểm phân biệt.
Áp dụng Viét ta có x 1 + x 2 = − 2 m x 1 x 2 = − 1 ⇒ | x 1 − x 2 | = ( x 1 − x 2 ) 2 = ( x 1 + x 2 ) 2 − 4 x 1 x 2 = 4 m 2 + 4 = 2 m 2 + 1
Khi đó ta có
y 1 = 2 m x 1 − 1 y 2 = 2 m x 2 − 1 ⇒ | y 1 2 − y 2 2 | = | ( 2 m x 1 − 1 ) 2 − ( 2 m x 2 − 1 ) 2 | ⇒ | y 1 2 − y 2 2 | = | ( 2 m x 1 − 1 − 2 m x 2 + 1 ) ( 2 m x 1 − 1 + 2 m x 2 − 1 ) | = | 4 m ( x 1 − x 2 ) [ m ( x 1 + x 2 ) − 1 ] | = | 4 m ( 2 m 2 + 1 ) ( x 1 − x 2 ) | = 4 m ( 2 m 2 + 1 ) | x 1 − x 2 | = 4 | m | ( 2 m 2 + 1 ) 2 m 2 + 1 Ta có: | y 1 2 − y 2 2 | = 3 5 ⇔ 64 m 2 ( 2 m 2 + 1 ) 2 ( m 2 + 1 ) = 45 ⇔ 64 ( 4 m 4 + 4 m 2 + 1 ) ( m 4 + m 2 ) = 45
Đặt: m 4 + m 2 = t ≥ 0 có phương trình 64 t ( 4 t + 1 ) = 45 ⇔ 256 t 2 + 64 t − 45 = 0 ⇔ t = 5 16 ( v ì t ≥ 0 ) ⇒ m 4 + m 2 = 5 16 ⇔ 16 m 4 + 16 m 2 − 5 = 0 ⇔ m = ± 1 2
Vậy m = ± 1 2
a) Để (d) đi qua điểm A(1;3) thì \(3=2m.1+5\Rightarrow2m=-2\Rightarrow m=-1\)
b) Xét phương trình hoành độ giao điểm: \(x^2=2mx+5\)
\(\Rightarrow x^2-2mx-5=0\left(I\right)\)
Ta có \(\Delta'=m^2+5>0,\forall m\) nên PT (I) luôn có 2 nghiệm phân biệt \(x_1,x_2\) với mọi \(m\)
Vậy (d) luôn cắt (P) tại hai điểm phân biệt.
c) Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-5\end{matrix}\right.\)
Để \(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow4m^2-2.\left(-5\right)=4\Leftrightarrow4m^2=-6\) (Vô lý)
Vậy không có m thỏa mãn ycbt.