cho 2 số nguyên tố a và b (a#0) . Hãy viết thuật toán tìm giá trị lớn nhất của 2 số a và b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) \(123456789+729=\text{123457518}⋮2\)
⇒ Số trên là hợp số
b)\(5.7.8.9.11-132=\text{27588}⋮2\)
⇒ Số trên là hợp số
Bài 2 :
a) \(P+2\&P+4\) ;à số nguyên tố
\(\Rightarrow\dfrac{P+2}{P+4}=\pm1\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{P+2}{P+4}=1\\\dfrac{P+2}{P+4}=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}P+2=P+4\\P+2=-P-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0.P=2\left(x\in\varnothing\right)\\2.P=-6\end{matrix}\right.\)
\(\Rightarrow P=-3\)
Câu b tương tự
a,123456789+729=123457518(hợp số)
b,5x7x8x9x11-132=27588(hợp số)
Bài 2,
a,Nếu P=2=>p+2=4 và p+4=6 (loại)
Nếu P=3=>p+2=5 và p+4=7(t/m)
P>3 => P có dạng 3k+1 hoặc 3k+2(k ϵn,k>0)
Nếu p=3k+1=>p+2=3k+3 ⋮3( loại)
Nếu p=3k+2=>p+4=3k+6⋮3(loại)
Vậy p=3 thỏa mãn đề bài
b,Nếu p=2=>p+10=12 và p+14=16(loại)
Nếu p=3=>p+10=13 và p+14=17(t/m)
Nếu p >3=>p có dạng 3k+1 hoặc 3k+2
Nếu p=3k+1=>p+14=3k+15⋮3(loại)
Nếu p=3k+2=>p+10=3k+12⋮3(loại)
Vậy p=3 thỏa mãn đề bài.
Giả sử a,b đều là số nguyên tố lớn hơn 3
=> a+b và a-b đều chẵn
Mà chỉ có 1 số nguyên tố chẵn là 2 => a+b=2 ; a-b=2
=>b=0. Mà 0 ko là số nguyên tố => b = 2
Ta có: a-2 ; a ;a+2 đều là số nguyên tố
=> a-2=3 ; a=5 ; a+2=7
=> a=5. Vậy a=5 b=7
để a-b là số nguyên tố thì a phải là số nguyên tố lớn hơn 3 (vì a=3 thì a-b=1 nếu b là số nguyên tố nhỏ nhất)
nếu a = 5 và b là số nguyên tố nhỏ nhất thì a+b=7 và a-b=3 là số nguyên tố (chọn)
nếu a là số nguyên tố lớn hơn 5 thì a+b hoặc a-b sẽ là hợp số
vậy a=5,b=2
a, b là số nguyên tố và a+b và a-b cũng là số nguyên tố => a hoặc b chẵn => a=2 hoặc b=2
xét a=2 => a-b <0 (loại)
xét b=2 => a lẻ => a có dạng 2k+1 => a-b=2k-1
=> a+b=2k +3
vì b có dạng 2k nên a= 2k + 3= 2+3=5
Thuật toán
B1: Nhập số nguyên a, nhập số nguyên b;
B2: Nếu a<b thì in giá trị b ra màn hình, ngược lại nếu a>b in a ra màn hình, ngược lại nếu a=b thì in ra thông báo 2 giá trị bằng nhau;
B3: Kết thúc