Tìm GTNN của P=\(\dfrac{2m+1}{4m^2+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{2m^2+7m+23}{m^2+2m+10}\Rightarrow Sm^2+2Sm+10S=2m^2+7m+23\)
\(\Leftrightarrow\left(S-2\right)m^2+\left(2S-7\right)m+10S-23=0\)
\(\Delta=\left(2S-7\right)^2-4\left(S-2\right)\left(10S-23\right)\ge0\)
\(\Leftrightarrow4S^2-16S+15\le0\)
\(\Rightarrow\dfrac{3}{2}\le S\le\dfrac{5}{2}\)
\(S_{min}=\dfrac{3}{2}\) khi \(m=-4\)
\(S_{max}=\dfrac{5}{2}\) khi \(m=2\)
Nguyễn Việt Lâm Giáo viên, thầy cho em hỏi tên phương pháp làm của thầy được không ạ??
\(\Leftrightarrow m.cosx+\left(2m-1\right)sinx+3-m=y\left(cosx+sinx-2\right)\)
\(\Leftrightarrow\left(m-y\right)cosx+\left(2m-y-1\right)sinx=m-2y-3\)
Pt có nghiệm khi:
\(\left(m-y\right)^2+\left(2m-y-1\right)^2\ge\left(m-2y-3\right)^2\)
\(\Leftrightarrow2y^2+\left(2m+10\right)y-4m^2-2m+8\le0\)
\(\Rightarrow\dfrac{-m-5-\sqrt{9m^2+14m+9}}{2}\le y\le\dfrac{-m-5+\sqrt{9m^2+14m+9}}{2}\)
\(\Rightarrow y_{min}=\dfrac{-m-5-\sqrt{9m^2+14m+9}}{2}\le3\)
\(\Rightarrow\sqrt{9m^2+14m+9}\ge-m-11\)
BPT này đúng với mọi m. Vậy bài toán thỏa mãn với mọi m
a: =>2,5x-0,5-4,5+2m(x-2)
=>2,5x+2mx-4m-5=0
=>x(2m+2,5)=4m+5
=>x(4m+5)=8m+10
TH1: m=-5/4
=>Phương trình có vô số nghiệm
=>Nhận
TH2: m<>-5/4
Phương trình có nghiệm duy nhất là x=(8m+10)/(4m+5)=2(loại)
b: =>\(\dfrac{3mx+12m+5}{9m^2-1}=\dfrac{\left(2x-3\right)\left(3m-1\right)+\left(3x-4m\right)\left(3m+1\right)}{\left(3m-1\right)\left(3m+1\right)}\)
=>6xm-2x-9m+3+9xm+3x-12m^2-4m=3mx+12m+5
=>-12m^2+15xm+x-13m+3-3mx-12m-5=0
=>-12m^2+x(15m+1-3m)-25m-2=0
=>x(12m+1)=12m^2+25m+2
=>x(12m+1)=(m+2)(12m+1)
Th1: m=-1/12
=>PT luôn có nghiệm
=>Nhận
TH2: m<>-1/12
Để phương trình có nghiệm âm thì m+2<0
=>m<-2
\(\Delta-=m^2+4m+5=\left(m+1\right)^2+1>0;\forall m\)
Pt đã cho luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-4m-5\end{matrix}\right.\)
\(\dfrac{1}{2}x_1\left(x_1+x_2\right)-\dfrac{1}{2}x_1x_2-\left(m-1\right)x_1+x_2-2m+\dfrac{33}{2}=762019\)
\(\Leftrightarrow mx_1+\dfrac{4m+5}{2}-mx_1+x_1+x_2-2m+\dfrac{33}{2}=762019\)
\(\Leftrightarrow\dfrac{4m+5}{2}+2m-2m+\dfrac{33}{2}=762019\)
\(\Leftrightarrow2m+19=762019\)
\(\Rightarrow m=...\)