a . 5n-1 =125
b. 82n+1 :42n+1 =32
c. 15n-3 :5n-3 = 81
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5^{n+2}+26.5^n+8^{2n+1}=25.5^n+26.6^n+8.8^{2n}\)
\(=5^n.51+8.64^n\)
Có \(64\equiv5\) (mod 59)
\(\Rightarrow64^n\equiv5^n\) (mod 59)
\(\Rightarrow8.64^n\equiv8.5^n\) (mod 59)
\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\) (mod 59)
mà \(8.5^n+5^n.51=59.5^n\)\(\equiv0\) (mod 59)
\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\equiv0\) (mod 59)
\(\Rightarrow5^{n+2}+26.5^n+8^{2n+1}⋮59\)
b) \(4^{2n}-3^{2n}-7=16^n-9^n-7\)
Có \(16^n-9^n-7=\left(16-9\right)\left(16^{n-1}+...+9^{n-1}\right)-7=7\left(16^{n-1}+...+9^{n-1}\right)-7⋮\)\(7\) (I)
Có \(16\equiv1\) (mod 3) \(\Rightarrow16^n\equiv1\) (mod 3) mà \(7\equiv1\) (mod 3)
\(\Rightarrow16^n-7\equiv0\) (mod 3) mà \(9^n\equiv0\) (mod 3)
\(\Rightarrow16^n-9^n-7⋮3\) (II)
Có \(9^n\equiv1\) (mod 8)\(\Rightarrow9^n+7\equiv8\) (mod 8)
\(\Rightarrow9^n+7⋮8\) mà \(16^n=2^n.8^n⋮8\)
\(\Rightarrow16^n-9^n-7⋮8\) (III)
Do \(\left(3;7;8\right)=1\)\(,3.7.8=168\)
Từ (I) (II) (III) \(\Rightarrow16^n-9^n-7⋮168\)
\(\Rightarrow\) Đpcm
a) 5n+2+26.5n+82n+1=25.5n+26.6n+8.82n5n+2+26.5n+82n+1=25.5n+26.6n+8.82n
=5n.51+8.64n=5n.51+8.64n
Có 64≡564≡5 (mod 59)
⇒64n≡5n⇒64n≡5n (mod 59)
⇒8.64n≡8.5n⇒8.64n≡8.5n (mod 59)
⇒5n.51+8.64n≡8.5n+5n.51⇒5n.51+8.64n≡8.5n+5n.51 (mod 59)
mà 8.5n+5n.51=59.5n8.5n+5n.51=59.5n≡0≡0 (mod 59)
⇒5n.51+8.64n≡8.5n+5n.51≡0⇒5n.51+8.64n≡8.5n+5n.51≡0 (mod 59)
a,gọi d là ƯCLN(3n+2,2n+1).(d \(\varepsilon\)N*).Ta có:
(3n+2)\(⋮\)d
(2n+1)\(⋮\)d
=>2.(3n+2)\(⋮\)d
3.(2n+1)\(⋮\)d
=>(6n+4) chia hết cho d
(6n+3) chia hết cho d
=>[(6n+4)-(6n+3)] chia hết cho d
=>1 chia hết cho d=>d thuộc Ư(1)={1}
=>d=1=>ƯCLN(3n+2,2n+1)=1
vậy 2 số 3n+2,2n+1 nguyên tố cùng nhau
còn lại phần b bạn cx làm thế nhưng lấy 5n+3 nhân với 3 còn 15n+10 thì giữ nguyên
phần c chỉ lấy 5n+2 nhân với 6 còn 30n+11 giữ nguyên
sau đó lấy số lớn trừ số bé =1 và kết luận
hk tốt nhé
Để C có GTNN thì \(\dfrac{-1}{5n-1}\) đạt GTNN
⇒\(\dfrac{-1}{5n-1}\le-1\)
\(\Rightarrow n=4\)
Vậy GTNN của C=-1
\(\dfrac{15n-2}{5n-1}=\dfrac{15n-3+1}{5n-1}=3+\dfrac{1}{5n-1}\)
Dấu '=' xảy ra khi n=4
1 nhân 0 bằng 0 vậy là do 0 nhân với số nào cx bằng 0 hay do 1 nhân với số nào cx bằng chính số đo
a: Gọi d=ƯCLN(15n+1;30n+1)
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>Đây là phân số tối giản
b: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>Phân số tối giản
gọi ƯCLN là d.Ta có 15n+1chia hết cho d và 30n+1 cũng chia hết cho n =>nhân 15n +1 cho 2 thì ta có:
30n+1-30n+2=-1 sẽ chia hết cho d
=>d là ước của -1.=>d = 1;-1.VÌ d là ƯCLN nên d = 1
Vì ƯCLN của 15n+1/30n+1 là 1 nên ps đó tg
****mấy câu khác cũng làm tương tự.CÂU THỨ 2 THI NHÂN TỬ CHO 3 VÀ nhân MẪU CHO 5.CÂU THỨ 3 NHÂN tử cho 2**
B1: Tìm giá trị nhỏ nhất của:
a) A = |n - 3| + 2
+) Có: |n - 3| ≥ 0 với mọi n
=> |n - 3| + 2 ≥ 0 + 2 với mọi n
=> A ≥ 2 với mọi n
Dấu "=" xảy ra <=> |n - 3| = 0 <=> n - 3 = 0 <=> n = 3
Vậy Amin = 2 <=> n = 3
b) \(C=\frac{15n-2}{5n-1}=\frac{3\left(5n-1\right)+1}{5n-1}=3+\frac{1}{5n-1}\)
Cmin <=> \(\frac{1}{5n-1}min\)\(\Rightarrow\hept{\begin{cases}\frac{1}{5n-1}< 0\\5n-1\text{ max}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5n-1< 0\\5n\text{ max}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n< \frac{1}{5}\\n\text{ max}\end{cases}}\)
(tớ nghĩ bài này thiếu điều kiện n thuộc Z)
Mà \(n\inℤ\)
\(\Rightarrow n=0\)
\(\Rightarrow C_{min}=-\frac{2}{-1}=2\text{ }\Leftrightarrow\text{ }n=0\)
Vậy Cmin = 2 <=> n = 0
B2: Tìm giá trị lớn nhất của:
a) A = 4 - (n + 3)2
+) Có: -(n + 3)2 ≤ 0 với mọi n
=> 4 - (n + 3)2 ≤ 4 với mọi n
=> A ≤ 4 với mọi n
Dấu "=" xảy ra <=> -(n + 3)2 = 0 <=> n + 3 = 0 <=> n = -3
Vậy Amax = 4 <=> n = -3
b) \(\frac{3}{4}-\frac{3}{2\left|n^2+1\right|}\)
+) Có n2 ≥ 0 với mọi n => n2 + 1 ≥ 0 với mọi n
=> 2|n2 + 1| ≥ 0 với mọi n
\(\Rightarrow-\frac{3}{2\left|n^2+1\right|}\le0\text{ }\forall n \)\(\Rightarrow\frac{3}{4}-\frac{3}{2\left|n^2+1\right|}\le\frac{3}{4}\text{ }\forall n\)
Dấu "=" xảy ra <=> n2 = 0 <=> n = 0
Vậy Bmax = \(\frac{3}{4}\) <=> n = 0
c) \(C=\frac{12n+11}{3n+2}=\frac{4\left(3n+2\right)+3}{3n+2}=4+\frac{3}{3n+2}\)
\(\Rightarrow C_{max}\text{ }\Leftrightarrow\text{ }\frac{3}{3n+2}\text{ }\text{m}\text{a}\text{x}\)
\(\Rightarrow\hept{\begin{cases}\frac{3}{3n+2}>0\\3n+2\text{ }min\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3n+2>0\\n\text{ m}\text{in}\end{cases}}\text{ }\Rightarrow\hept{\begin{cases}n>-\frac{2}{3}\\n\text{ }\text{m}\text{i}\text{n}\end{cases}}\)
Mà n thuộc Z => n = 0
\(\Rightarrow C_{max}=\frac{11}{2}\text{ }\Leftrightarrow\text{ }n=0\)
Vậy Cmax = 5,5 <=> n = 0
a, n^3 +5n
= n^3 -n+ 6n
= n(n^2-1)+ 6n
=n(n-1)(n+1) +6n
Vì n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên n(n-1)(n+1) chia hết cho 6
Mặt khác, 6n chia hết cho 6.
Suy ra: n(n-1)(n+1) +6n chia hết cho 6
Vậy n^3 + 5n chia hết cho 6
b, n^3 *19n ko chia hết cho 6 được.Bạn nên xem lại đề bài xem có đúng ko.
c, 5n^3 + 15n^2 +10n
= 5n(n^2 +3n+2)
= 5n(n+1)(n+2)
n(n+1)(n+2) chia hết cho 6 nên 5n^3 +15n^2 +10n chia hết cho 6
Chúc bạn học tốt.
\(a,5^{n-1}=125\)
\(\Rightarrow5^{n-1}=5^3\)
\(\Rightarrow n-1=3\)
\(\Rightarrow n=3+1\)
\(\Rightarrow n=4\)