K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

\(a,5^{n-1}=125\)

\(\Rightarrow5^{n-1}=5^3\)

\(\Rightarrow n-1=3\)

\(\Rightarrow n=3+1\)

\(\Rightarrow n=4\)

28 tháng 6 2021

a) \(5^{n+2}+26.5^n+8^{2n+1}=25.5^n+26.6^n+8.8^{2n}\)

\(=5^n.51+8.64^n\)

Có \(64\equiv5\) (mod 59)

\(\Rightarrow64^n\equiv5^n\) (mod 59)

\(\Rightarrow8.64^n\equiv8.5^n\) (mod 59)

\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\) (mod 59)

mà \(8.5^n+5^n.51=59.5^n\)\(\equiv0\) (mod 59)

\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\equiv0\) (mod 59) 

\(\Rightarrow5^{n+2}+26.5^n+8^{2n+1}⋮59\)

b) \(4^{2n}-3^{2n}-7=16^n-9^n-7\)

Có \(16^n-9^n-7=\left(16-9\right)\left(16^{n-1}+...+9^{n-1}\right)-7=7\left(16^{n-1}+...+9^{n-1}\right)-7⋮\)\(7\) (I)

Có \(16\equiv1\) (mod 3) \(\Rightarrow16^n\equiv1\) (mod 3) mà \(7\equiv1\) (mod 3)

\(\Rightarrow16^n-7\equiv0\) (mod 3) mà \(9^n\equiv0\) (mod 3)

\(\Rightarrow16^n-9^n-7⋮3\) (II)

Có \(9^n\equiv1\) (mod 8)\(\Rightarrow9^n+7\equiv8\) (mod 8) 

\(\Rightarrow9^n+7⋮8\)  mà \(16^n=2^n.8^n⋮8\) 

\(\Rightarrow16^n-9^n-7⋮8\) (III)

Do \(\left(3;7;8\right)=1\)\(,3.7.8=168\)

Từ (I) (II) (III) \(\Rightarrow16^n-9^n-7⋮168\) 

\(\Rightarrow\) Đpcm

28 tháng 6 2021

a) 5n+2+26.5n+82n+1=25.5n+26.6n+8.82n5n+2+26.5n+82n+1=25.5n+26.6n+8.82n

=5n.51+8.64n=5n.51+8.64n

Có 64≡564≡5 (mod 59)

⇒64n≡5n⇒64n≡5n (mod 59)

⇒8.64n≡8.5n⇒8.64n≡8.5n (mod 59)

⇒5n.51+8.64n≡8.5n+5n.51⇒5n.51+8.64n≡8.5n+5n.51 (mod 59)

mà 8.5n+5n.51=59.5n8.5n+5n.51=59.5n≡0≡0 (mod 59)

⇒5n.51+8.64n≡8.5n+5n.51≡0⇒5n.51+8.64n≡8.5n+5n.51≡0 (mod 59) 

9 tháng 12 2018

a,gọi d là ƯCLN(3n+2,2n+1).(d \(\varepsilon\)N*).Ta có:

(3n+2)\(⋮\)d

(2n+1)\(⋮\)d

=>2.(3n+2)\(⋮\)d

3.(2n+1)\(⋮\)d

=>(6n+4) chia hết cho d

(6n+3) chia hết cho d

=>[(6n+4)-(6n+3)] chia hết cho d

=>1 chia hết cho d=>d thuộc Ư(1)={1}

=>d=1=>ƯCLN(3n+2,2n+1)=1

vậy 2 số 3n+2,2n+1 nguyên tố cùng nhau

còn lại phần b bạn cx làm thế nhưng lấy 5n+3 nhân với 3 còn 15n+10 thì giữ nguyên

phần c chỉ lấy 5n+2 nhân với 6 còn 30n+11 giữ nguyên

sau đó lấy số lớn trừ số bé =1 và kết luận

hk tốt nhé

9 tháng 12 2018

Thank you Đặng Yến ngọc. bạn làm đúng rùi đó

5 tháng 9 2021

Để C có GTNN thì \(\dfrac{-1}{5n-1}\) đạt GTNN

\(\dfrac{-1}{5n-1}\le-1\) 

\(\Rightarrow n=4\)

Vậy GTNN của C=-1

\(\dfrac{15n-2}{5n-1}=\dfrac{15n-3+1}{5n-1}=3+\dfrac{1}{5n-1}\)

Dấu '=' xảy ra khi n=4

4 tháng 1 2022

1 nhân 0 bằng 0 vậy là do 0 nhân với số nào cx bằng 0 hay do 1 nhân với số nào cx bằng chính số đo

22 tháng 4 2023

a: Gọi d=ƯCLN(15n+1;30n+1)

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>Đây là phân số tối giản

b: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>Phân số tối giản

10 tháng 3 2016

 gọi ƯCLN là d.Ta có 15n+1chia hết cho d và 30n+1 cũng chia hết cho n =>nhân 15n +1 cho 2 thì ta có:

30n+1-30n+2=-1 sẽ chia hết cho d

=>d là ước của -1.=>d = 1;-1.VÌ d là ƯCLN nên d = 1

Vì ƯCLN của 15n+1/30n+1 là 1 nên ps đó tg

****mấy câu khác cũng làm tương tự.CÂU THỨ 2 THI NHÂN TỬ CHO 3 VÀ nhân MẪU CHO 5.CÂU THỨ 3 NHÂN tử cho 2**

5 tháng 9 2021

B1: Tìm giá trị nhỏ nhất của:

a) A = |n - 3| + 2

+) Có: |n - 3| ≥ 0 với mọi n

=> |n - 3| + 2 ≥ 0 + 2 với mọi n

=> A ≥ 2 với mọi n

Dấu "=" xảy ra <=> |n - 3| = 0 <=> n - 3 = 0 <=> n = 3

Vậy Amin = 2 <=> n = 3

b) \(C=\frac{15n-2}{5n-1}=\frac{3\left(5n-1\right)+1}{5n-1}=3+\frac{1}{5n-1}\)

Cmin <=> \(\frac{1}{5n-1}min\)\(\Rightarrow\hept{\begin{cases}\frac{1}{5n-1}< 0\\5n-1\text{ max}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}5n-1< 0\\5n\text{ max}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n< \frac{1}{5}\\n\text{ max}\end{cases}}\)

(tớ nghĩ bài này thiếu điều kiện n thuộc Z)

Mà \(n\inℤ\)

\(\Rightarrow n=0\)

\(\Rightarrow C_{min}=-\frac{2}{-1}=2\text{ }\Leftrightarrow\text{ }n=0\)

Vậy Cmin = 2 <=> n = 0

5 tháng 9 2021

B2: Tìm giá trị lớn nhất của:

a) A = 4 - (n + 3)2

+) Có: -(n + 3)2 ≤ 0 với mọi n

=> 4 - (n + 3)2 ≤ 4 với mọi n

=> A ≤ 4 với mọi n

Dấu "=" xảy ra <=> -(n + 3)2 = 0 <=> n + 3 = 0 <=> n = -3

Vậy Amax = 4 <=> n = -3

b) \(\frac{3}{4}-\frac{3}{2\left|n^2+1\right|}\)

+) Có n2 ≥ 0 với mọi n => n2 + 1 ≥ 0 với mọi n

=> 2|n2 + 1| ≥ 0 với mọi n

\(\Rightarrow-\frac{3}{2\left|n^2+1\right|}\le0\text{ }\forall n \)\(\Rightarrow\frac{3}{4}-\frac{3}{2\left|n^2+1\right|}\le\frac{3}{4}\text{ }\forall n\)

Dấu "=" xảy ra <=> n2 = 0 <=> n = 0

Vậy Bmax = \(\frac{3}{4}\) <=> n = 0

c) \(C=\frac{12n+11}{3n+2}=\frac{4\left(3n+2\right)+3}{3n+2}=4+\frac{3}{3n+2}\) 

\(\Rightarrow C_{max}\text{ }\Leftrightarrow\text{ }\frac{3}{3n+2}\text{ }\text{m}\text{a}\text{x}\)

\(\Rightarrow\hept{\begin{cases}\frac{3}{3n+2}>0\\3n+2\text{ }min\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3n+2>0\\n\text{ m}\text{in}\end{cases}}\text{ }\Rightarrow\hept{\begin{cases}n>-\frac{2}{3}\\n\text{ }\text{m}\text{i}\text{n}\end{cases}}\)

Mà n thuộc Z => n = 0

\(\Rightarrow C_{max}=\frac{11}{2}\text{ }\Leftrightarrow\text{ }n=0\)

Vậy Cmax = 5,5 <=> n = 0

a n.n.n+5n chia het cho 6

25 tháng 7 2018

a, n^3 +5n

= n^3 -n+ 6n

= n(n^2-1)+ 6n

=n(n-1)(n+1) +6n

Vì n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên n(n-1)(n+1) chia hết cho 6

Mặt khác, 6n chia hết cho 6.

Suy ra: n(n-1)(n+1) +6n chia hết cho 6

Vậy n^3 + 5n chia hết cho 6

b, n^3 *19n ko chia hết cho 6 được.Bạn nên xem lại đề bài xem có đúng ko.

c, 5n^3 + 15n^2 +10n

= 5n(n^2 +3n+2)

= 5n(n+1)(n+2)

n(n+1)(n+2) chia hết cho 6 nên 5n^3 +15n^2 +10n chia hết cho 6

Chúc bạn học tốt.