K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\widehat{ABE}=\dfrac{\widehat{ABC}}{2}\)(BE là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACF}=\dfrac{\widehat{ACB}}{2}\)(CF là tia phân giác của \(\widehat{ACB}\))

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABE}=\widehat{ACF}\)

Xét ΔABE và ΔACF có 

\(\widehat{ABE}=\widehat{ACF}\)(cmt)

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF(g-c-g)

Suy ra: BE=CF(Hai cạnh tương ứng)

c) Xét ΔABC có 

BE là đường phân giác ứng với cạnh AC(gt)

CF là đường phân giác ứng với cạnh AB(gt)

BE cắt CF tại D(gt)

Do đó: D là tâm đường tròn nội tiếp ΔABC(Định lí ba đường phân giác)

Suy ra: D cách đều ba cạnh của tam giác ABC

hay DM=DK=DN(Đpcm)

31 tháng 3 2021

bạn tự ve hình nhé. câu a) dễ dàng cm tam giác FAC=EAC(cạnh huyền góc nhọn)

==> BE=CF

câu b)cm tam giác FAH=EAH( c.huyền-cgv)( lưu ý AF=AE do chứng minh trên)

==>AH là tia phân giác

câu c)gọi giao điểm AH và BC là I

có AH là tia pgiac. 

dễ dàng cm tam giác ABI=ACI

==>goc AHC=góc AHB

mà góc BHC =180 độ 

==>AHC=180/2=90 độ

==>AH vuông góc vs BC

mik ms tập ghi nên hơi gà, thông cảm nha:)))

31 tháng 3 2021

bạn vẽ hình hộ mk vs

A B C E F M D N

a) Vì \(\Delta ABC\) cân tại A nên AB = AC và Góc B = Góc C. Vì \(BE\perp AC;CF\perp AB\left(gt\right)\) 

Nên ^AFC = ^BFC = ^AEB = ^CEB = 900. Xét \(\Delta AFC\) và \(\Delta AEB\) có :

^AFC = ^AEB = 900\(AC=AB\left(cmt\right)\); Góc O chung. \(\Rightarrow\Delta AFC=\Delta AEB\left(ch.gn\right)\)

b) \(\Rightarrow AF=AE\) ( 2 cạnh tương ứng ). Có ^AFC = ^AEB hay ^AFD = ^AED = 900

Xét \(\Delta AED\) và  \(\Delta AFD\) có : ^AFD = ^AED = 90( cmt ) ; \(AF=AE\left(cmt\right);AD\)  chung

\(\Rightarrow\Delta AED=\Delta AFD\left(ch.cgv\right)\Rightarrow\) ^EAD = ^FAD ( tương ứng ) nên AD là phân giác ^FAE ( đpcm )

c) Gọi giao điểm của AM và DE tại N. Xét \(\Delta AEN\) và  \(\Delta AFN\) có :

\(AE=AF\left(cmt\right)\); ^EAN = ^FAN ( ^EAD = ^FAD );  \(AN\) chung. 

\(\Rightarrow\Delta AEN=\Delta AFN\left(c.g.c\right)\Leftrightarrow\) ^ANE =  ^ANF ( tương ứng ). Mà ^ANE + ^ANF = 1800 ( kề bù )

=> ^ANE = ^ANF = 1800 : 2 = 900 \(\Leftrightarrow AN\perp FE\). Mà N là giao điểm của AM và FE

Nên N thuộc AM  \(\Rightarrow AN\perp FE\Leftrightarrow AM\perp FE\left(đpcm\right)\)

Ờ ! viết bằng nhau ''='' thật đấy, nhưng trên hình kí hiệu j đâu mà viết nó ''='' nhau

LOGIC ? 

Cái deck j vại, bn nhìn thấy ^O ở đâu thế bn Minh !

Ý thức ko mua đc ''='' tiền.

14 tháng 11 2016

Bài 2:

Bạn tự vẽ hình và ghi gt kl nha!

a) Xét 2 tam giác OAD và tam giác OBC có:

Ô là góc chung

OA = OC (gt)

OB = OD (gt)

suy ra tam giác OAD = tam giác OBC(c-g-c)

suy ra AD = BC ( 2 cạnh tương ứng)

b) Ta có: OB = OA + AB

OD = OC + CD

mà OB = OD

OA = OC

suy ra AB = CD

Bạn kí hiệu A1, A2, C1, C2 vào hình vẽ nhé!

Xét 2 tam giác EAB và tam giác ECD có:

AB = CD (cmt)

Góc B = góc D (Vì tam giác OAD = tam giác OBC)

góc A1 + A2 = 180 độ

góc C1 + C2 = 180 độ

mặt khác góc A1 = góc A2 (vì tam giác OAD = tam giác OBC)

suy ra góc A2 = góc C2

suy ra tam giác EAB = tam gics ECD (g-c-g)

c) Xét 2 tam giác OAE và tam giác OCE có:

OA = OB (gt)

AE = CE (vì tam giác EAB = tam giác ECD)

OE là cạnh chung

suy ra tam giác OAE = tam giác OCE (c-c-c)

suy ra góc O1 = O2 ( 2 góc tương ứng)

mà góc O1 = góc O2

suy ra OE là tia phân giác của xÔy

 

14 tháng 11 2016

thông minh lắm Hà

24 tháng 2 2015

a) Tam giác ABE ( góc E=90 độ) và Tam giác ACF ( góc F=90 độ), có:

AB = AC ( gt ) 

Góc A chung

=> tam giác ... = tam giac ... ( cạnh huyền - góc nhọn)

=> BE = CF và góc ABE = góc ACF

b) Tam giác FCB ( góc F = 90 độ) và tam giác BEC ( góc E=90 độ), có:

BC chung

FC = EB ( c/m trên)

=> tam giác... = tam giác... ( cạnh huyền-cạnh góc vuông)

=> FB=EC

Tam giác ECI và tam giác FBI, có:

EC=FB (c/m trên)

góc E= góc F (=90 độ)

góc ACF = góc ABE (c/m trên)

=> tam giác ...= tam giác... (g-c-g)

c) Ta có: FA=AB - FB

              EA=AC - EC

mà AB=AC; FB=EC

=> FA=EA

tam giác AIF(F=90 độ) tam giác AIE (E = 90 độ), có:

AI chung

FA=EA (c/ m trên)

=> tam giác... = tam giác... (  cạnh huyền-cạnh góc vuông)

=> góc BAI = góc CAI

hay AI là phân giác của góc A