K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A\left(x\right)=2x^4-x^3+3x^2+9x-2\)

\(B\left(x\right)=2x^4-5x^3-x+9\)

\(C\left(x\right)=x^4+4x^2+5\)

A(x): bậc 4; hệ số cao nhất là 2; hệ số tự do là -2

B(x): bậc 4; hệ số cao nhất là 4; hệ số tự do là 9

b: M(x)=A(x)+B(x)=4x^4-6x^3+3x^2+8x+7

N(x)=B(x)-A(x)=-4x^3-3x^2-10x+11

c: Q(x)=-N(x)=4x^3+3x^2+10x-11

a: P(x)=x^4-2x^4-5x^3-7x^2+2x-1

=-x^4-5x^3-7x^2+2x-1

Q(x)=3x^4-2x^4+5x^3+6x^2-2x+5

=x^4+5x^3+6x^2-2x+5

 

AH
Akai Haruma
Giáo viên
15 tháng 3 2019

Lời giải:

Các đa thức sau khi được thu gọn và sáp xếp theo lũy giảm dần:
a) \(-x^4-4x^3+3x^2+6x-7\)

Bậc của đa thức: 4

Hệ số cao nhất : -1

Hệ số tự do : -7

b) \(-x^4-5x^3-5x^2+5\)

Bậc của đa thức: 4

Hệ số cao nhất : -1

Hệ số tự do: 5

c) \(7x^2+3x-1\)

Bậc của đa thức: 2

Hệ số cao nhất: 7

Hệ tự do: -1

d) \(3x^4+9x^3-3x^2+5x+4\)

Bậc của đa thức: 4

Hệ số cao nhất: 3

Hệ số tự do: 4

9 tháng 1

Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1

a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)

\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)

\(=-x^4+3x^3+x^2+x+6\)

\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)

\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)

\(=-x^5-2x^4-2x-1\)

b: Bạn ghi lại đề đi bạn

a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)

\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)

b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)

\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)

8 tháng 4 2022

a)\(Q\left(x\right)=2x^3+4x^4-6x-5x^2+\dfrac{3}{2}\)

\(P\left(x\right)=2x^2-5x^4-8x+\dfrac{1}{2}\)

`7,`

`a,`

\(M(x) = - 5x ^ 4 + 3x ^ 5 + x(x ^ 2 + 5) + 14x ^ 4 - 6x ^ 5 - x ^ 3 + x - 1 \)

\(M(x)=-5x^4+3x^5+x^3+5x+14x^4-6x^5-x^3+x-1\)

`M(x)=(3x^5-6x^5)+(-5x^4+14x^4)+(x^3-x^3)+(5x+x)-1`

`M(x)=-3x^5+9x^4+6x-1`

 

\(N(x)=x ^ 4 (x - 5) - 3x ^ 3 + 3x + 2x ^ 5 - 4x ^ 4 + 3x ^ 3 - 5 \)

\(N(x)=x^5-5x^4-3x^3+3x+2x^5-4x^4+3x^3-5\)

`N(x)=(x^5+2x^5)+(-5x^4-4x^4)+(-3x^3+3x^3)+3x-5`

`N(x)=3x^5-9x^4+3x-5`

`b,`

`H(x)=M(x)+N(x)`

\(H(x)=(-3x^5+9x^4+6x-1)+(3x^5-9x^4+3x-5) \)

`H(x)=-3x^5+9x^4+6x-1+3x^5-9x^4+3x-5`

`H(x)=(-3x^5+3x^5)+(9x^4-9x^4)+(6x+3x)+(-1-5)`

`H(x)=9x-6`

 

`G(x)=M(x)-N(x)`

\(G(x)=(-3x^5+9x^4+6x-1)-(3x^5-9x^4+3x-5)\)

`G(x)=-3x^5+9x^4+6x-1-3x^5+9x^4-3x+5`

`G(x)=(-3x^5-3x^5)+(9x^4+9x^4)+(6x-3x)+(-1+5)`

`G(x)=-6x^5+18x^4+3x+4`

`c,`

`H(x)=9x-6`

Hệ số cao nhất của đa thức: `9`

Hệ số tự do: `-6`

`G(x)=-6x^5+18x^4+3x+4`

Hệ số cao nhất của đa thức: `-6`

Hệ số tự do: `4`

`d,`

`H(-1)=9*(-1)-6=-9-6=-15`

`H(1)=9*1-6=9-6=3`

`G(1)=-6*1^5+18*1^4+3*1+4`

`G(1)=-6+18+3+4=12+3+4=15+4=19`

`G(0)=-6*0^5+18*0^4+3*0+4=4`

`H(-3/2)=9*(-3/2)-6=-27/2-6=-39/2`

`e,`

Đặt `H(x)=9x-6=0`

`-> 9x=0+6`

`-> 9x=6`

`-> x=6 \div 9`

`-> x=2/3`

Vậy, nghiệm của đa thức là `x=2/3.`

a: Ta có: \(x^2-4x\left(3x-4\right)+7x-5\)

\(=x^2-12x^2+16x+7x-5\)

\(=-11x^2+23x-5\)

b: Ta có: \(7x\left(x^2-5\right)-3x^2y\left(xy-6y^2\right)\)

\(=7x^3-35x-3x^3y^2+18x^2y^3\)

c: Ta có: \(\left(5x+4\right)\left(2x-7\right)\)

\(=10x^2-35x+8x-28\)

\(=10x^2-27x-28\)

25 tháng 8 2021

undefined

7 tháng 5 2019

\(M\left(x\right)=3x^4-2x^3+5x^2-4x+1\)

\(N\left(x\right)=-3x^4+2x^3-5x^2+7x+5\)

7 tháng 5 2019

\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)

\(=\left(3x^4-2x^3+5x^2-4x+1\right)+\left(-3x^4+2x^3-5x^2+7x+5\right)\)

\(=3x+6\)

\(Q\left(x\right)=M\left(x\right)-N\left(x\right)\)

\(=\left(3x^4-2x^3+5x^2-4x+1\right)-\left(-3x^4+2x^3-5x^2+7x+5\right)\)

\(=3x^4-2x^3+5x^2-4x+1+3x^4-2x^3+5x^2-7x-5\)

\(=6x^4-4x^3+10x^2-11x-4\)

a) Ta có: \(P\left(x\right)=5x^2+3x^3-5x^2+2x^3-2+4x-4x^2+x^3\)

\(=\left(3x^3+2x^3+x^3\right)+\left(5x^2-5x^2-4x^2\right)+4x-2\)

\(=6x^3-4x^2+4x-2\)

Ta có: \(Q\left(x\right)=6x-x^3+5-6x^3-6+7x^2-10x^2\)

\(=\left(-x^3-6x^3\right)+\left(7x^2-10x^2\right)+6x+\left(5-6\right)\)

\(=-7x^3-3x^2+6x-1\)

b) Ta có: P(x)+Q(x)

\(=6x^3-4x^2+4x-2-7x^3-3x^2+6x-1\)

\(=-x^3-7x^2+10x-3\)

Ta có: P(x)-Q(x)

\(=6x^3-4x^2+4x-2+7x^3+3x^2-6x+1\)

\(=13x^3-x^2-2x-1\)