Cho tam giác ABC vuông tại A.Kẻ đường cao AH
A) Biết BC=20cm, HA/HC=3/4.tính AH,HC,BC
B)C/m AH3=BC.BD,CE(DE lần lượt là hình chiếu của H trên AB,AC)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
HB=15^2/25=9cm
=>HC=16cm
b: Xét ΔCAB vuông tại A và ΔAHB vuông tại H có
góc B chung
=>ΔCAB đồng dạng với ΔAHB
c: Xét ΔABC vuôg tại A co AH là đường cao
nen AH^2=HB*HC
d: góc AMH=góc ANH=góc MAN=90 độ
=>AMHN là hình chữ nhật
=>AH cắt MN tại trung điểm của mỗi đường
=>M,I,N thẳng hàng
e: AM*AB=AH^2
AN*AC=AH^2
=>AM*AB=AN*AC
b: Xét ΔHAB vuông tại H có HD là đường cao ứng với cạnh huyền BA
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: Xét ΔBHA vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(BM\cdot BA=BH^2\left(1\right)\)
Xét ΔBHC vuông tại H có HN là đường cao ứng với cạnh huyền CB
nên \(BN\cdot BC=BH^2\left(2\right)\)
Từ (1) và (2) suy ra \(BM\cdot BA=BH\cdot BC\)