Chứng minh với những kiến thức trong phạm vi SGK lớp 5. Nhứng lời giải sử dụng kiến thức lớp 6 trở lên sẽ không được chấp nhận.
Cho a,b,c là các số tự nhiên khác 0, chứng minh rằng:
\(\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{c+a}< 2\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì E là trung điểm của AB
F là trung điểm của AC
=>EF là đường trung bình của △ABC
=> EF=1/2BC và EF//BC
Ta có: a.b = c.(a + b) => a.b + c^2 = c.(a + b + c)
Do a và c nguyên tố cùng nhau nên (a, c) = 1. Từ đó suy ra (a^2, c) = 1 và (b^2, c) = 1.
Mà a.b + c^2 = c.(a + b + c) nên ta có:
a.b + c^2 ≡ 0 (mod c)
a.b ≡ -c^2 (mod c)
a.b ≡ 0 (mod c)
Vì (a, c) = 1 nên ta có (b, c) = 1.
Từ a.b = c.(a + b) và (a, c) = 1, suy ra a|b. Đặt b = a.k (k là số tự nhiên).
Thay vào a.b = c.(a + b), ta được:
a^2.k = c.(a + a.k) => k = c/(a^2 - c)
Vì k là số tự nhiên nên a^2 - c | c. Nhưng (a, c) = 1 nên a^2 - c không chia hết cho c. Do đó a^2 - c = 1.
Từ đó suy ra c = a^2 - 1.
Vậy a.b.c = a^2.b - b là số chính phương.
kiến thức lớp 8 chưa hok nên ko hỉu!!
5654646457568
Số ước của A chỉ chứa thừa số nguyên tố là x thừa số, chỉ chứa thừa số nguyên tố b là y thừa số, chỉ chứa thừa số nguyên tố c là z thừa số, chỉ chứa thừa số nguyên tố ab là xy thừa số, chỉ chứa thừa số nguyên tố ac là xz thừa số, chỉ chứa thừa số nguyên tố bc là yz thừa số, chỉ chứa thừa số nguyên tố abc là xyz thừa số. Vì A là ước của chính nó, do đó số ước của A bằng:
x+y+z+xy+yz+zx+xyz+1 = x(z+1)+y(z+1)+xy(z+1)+z+1 = (z+1)(x+y+xy+1)
= (z+1)[(x+1)+y(x+1)] = (z+1)(y+1)(x+1)
`@Neo`
\(\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{c+a}< 2\)
\(\dfrac{b}{a+b}< \dfrac{b+c}{a+b+c}\)
\(\dfrac{a}{c+a}< \dfrac{a+b}{a+b+c}\)
Cộng vế vs vế:
\(\Rightarrow\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{b+c}{a+b+c}+\dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}\)
\(=\dfrac{b+c+a+b+b+c}{a+b+c}\)
\(=\dfrac{2\left(a+b+c\right)}{a+b+c}\)
\(=2\)
Vậy kết quả là `2` .
Sử dụng tính chất ( tự rút ra) : `a/b < (a+n)/(b+n)` ( `n>0` )
Khi đó thì :
`b/(a+b) < (b+c)/(a+b+c)`
`c/(b+c) < (c+a)/(b+c+a)`
`a/(c+a) < (a+b)/(c+a+b)`
Nên `b/(a+b) +c/(b+c)+a/(c+a) < (b+c)/(a+b+c)+(c+a)/(b+c+a)+(a+b)/(c+a+b)`
Ta có :
`(b+c)/(a+b+c)+(c+a)/(b+c+a)+(a+b)/(c+a+b) = (b+c+c+a+a+b)/(a+b+c) = (2 xx (a+b+c))/(a+b+c) =2`
Vậy `b/(a+b) +c/(b+c)+a/(c+a) <2`