Tính
A= 1/( căn 25+ căn +24) + 1/( căn 23+ căn 22)+...+ 1/(căn 2 +1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số hạng tổng quát: 1/[n.căn(n-1)+(n-1).căn n] n=1,2,....100
trục căn thức 1/[n.căn(n-1)+(n-1).căn n] =[n.căn(n-1)-(n-1).căn n] /[n2.(n-1)-(n-1)2.n]
=[n.căn(n-1)-(n-1).căn n]/(n-1).n(n-n+1)=[n.căn(n-1)-(n-1).căn n]/(n-1).n.
= 1/ căn(n-1)-1/căn n
thay số:
1/(2.căn 1 +1.căn 2)= 1/căn 1 -1/căn 2
1/(3.căn 2+ 2.căn 3 )= 1/căn 2 -1/căn 3
........
1/(100.căn99 + 99.căn 100)= 1/ căn 99-1/ căn 100
cộng tổng theo 2 vế được:
1/(2.căn 1 +1.căn 2) + 1/(3.căn 2+ 2.căn 3 )+...+ 1/(100.căn99 + 99.căn 100)= 1/ căn 1-1/ căn100
=1-1/10=9/10
a) \(\sqrt[]{x^2-4x+4}=x+3\)
\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)
\(\Leftrightarrow\left|x-2\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)
\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)
\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)
Giải pt (1)
\(\Delta=9+32=41>0\)
Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)
Giải pt (2)
\(\Delta=9+48=57>0\)
Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)
Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)
2: =>2x^2-8x+4=x^2-4x+4 và x>=2
=>x^2-4x=0 và x>=2
=>x=4
3: \(\sqrt{x^2+x-12}=8-x\)
=>x<=8 và x^2+x-12=x^2-16x+64
=>x<=8 và x-12=-16x+64
=>17x=76 và x<=8
=>x=76/17
4: \(\sqrt{x^2-3x-2}=\sqrt{x-3}\)
=>x^2-3x-2=x-3 và x>=3
=>x^2-4x+1=0 và x>=3
=>\(x=2+\sqrt{3}\)
6:
=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=-2\)
=>\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=-2\)
=>\(\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1+2=\sqrt{x-1}+3\)
=>1-căn x-1=căn x-1+3 hoặc căn x-1-1=căn x-1+3(loại)
=>-2*căn x-1=2
=>căn x-1=-1(loại)
=>PTVN
1) ĐK: \(x\ge\dfrac{5}{2}\)
pt <=> \(x-4=\sqrt{2x-5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-4\right)^2=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-8x+16=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-10x+21=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-3\right)\left(x-7\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left[{}\begin{matrix}x=3\left(l\right)\\x=7\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=7
2) ĐK: \(2x^2-8x+4\ge0\)
pt <=> \(\left\{{}\begin{matrix}x\ge2\\2x^2-8x+4=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\left(x-4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=0\left(l\right)\\x=4\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=4
3) ĐK: \(x\ge3\)
pt <=> \(\left\{{}\begin{matrix}x\le8\\x^2+x-12=x^2-16x+64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\17x=76\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=\dfrac{76}{17}\left(n\right)\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là \(x=\dfrac{76}{17}\)\(\)
Ứng dụng giải toán đã được review rất hay bởi trang báo uy tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html
a) \(6\sqrt{x-1}-\dfrac{1}{3}\cdot\sqrt{9x-9}+\dfrac{7}{2}\sqrt{4x-4}=24\) (ĐK: \(x\ge1\))
\(\Leftrightarrow6\sqrt{x-1}-\dfrac{1}{3}\cdot\sqrt{9\left(x-1\right)}+\dfrac{7}{2}\sqrt{4\left(x-1\right)}=24\)
\(\Leftrightarrow6\sqrt{x-1}-\dfrac{1}{3}\cdot3\sqrt{x-1}+\dfrac{7}{2}\cdot2\sqrt{x-1}=24\)
\(\Leftrightarrow6\sqrt{x-1}-\sqrt{x-1}+7\sqrt{x-1}=24\)
\(\Leftrightarrow12\sqrt{x-1}=24\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{24}{12}\)
\(\Leftrightarrow\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)
\(\Leftrightarrow x=4+1\)
\(\Leftrightarrow x=5\left(tm\right)\)
b) \(\dfrac{1}{2}\sqrt{4x+8}-2\sqrt{x+2}-\dfrac{3}{7}\sqrt{49x+98}=-8\) (ĐK: \(x\ge-2\))
\(\Leftrightarrow\dfrac{1}{2}\cdot2\sqrt{x+2}-2\sqrt{x+2}-\dfrac{3}{7}\cdot7\sqrt{x+2}=-8\)
\(\Leftrightarrow\sqrt{x+2}-2\sqrt{x+2}-3\sqrt{x+2}=-8\)
\(\Leftrightarrow-4\sqrt{x+2}=-8\)
\(\Leftrightarrow\sqrt{x+2}=\dfrac{-8}{-4}\)
\(\Leftrightarrow\sqrt{x+2}=2\)
\(\Leftrightarrow x+2=4\)
\(\Leftrightarrow x=4-2\)
\(\Leftrightarrow x=2\left(tm\right)\)
a: Ta có: \(4\sqrt{3a}-3\sqrt{12a}+\dfrac{6\sqrt{a}}{3}-2\sqrt{20a}\)
\(=4\sqrt{3a}-6\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)
\(=-2\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)