K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

Gọi số cần tìm là (abcde); đ/k: 0<a,b,c,d,e < 9 theo bài ra ta có:

(abcde) = 45 x a x b x c x d x e

=> (abcde) phải là số chia hết cho 5 (bởi vì tích có thừa số 5).

=> e = 0 (loại) hoặc e = 5 (thoả mãn); a,b,c,d,e đều là số lẻ (*1)

* Mặt khác ta lại có: (a,b,c,d,e) = (abc) x 100 + (de)

=> (abc) x 100 + (de) = 45 x a x b x c x 5 = 9 x 5 x 5 x a x b x c = 9 x 25 x a x b x c.

=> (de) hay (d5) phải là số chia hết cho 25 => chỉ có (de) = 75 thoả mãn

* Mặt khác: 10000 < (abcd) < 99999

=> 10000< 45 x a x b x c x 7 x 5 < 99999 => 6 < a x b x c < 64 (*2)

(abcde) phải là số chia hết cho 9 (Vì (abcde) = 5x9 x a x b x c x 7 x 5)

=> a+b+c+d+e = a+b+c+7+5 phải chia hết cho 9

=> a+b+c = 6 (loại) hoặc 15 (thoả mãn)hoặc 24 (loại) (đối chiếu với đk a,b,c đều lẻ (*1))

Vậy a+b+c = 15 => a,b,c là một trong các bộ chữ số sau: (7,7,1); (1,5,9); (3,3,9);(3,6,7);(5,5,5). Đối chiếu với điều kiện (*2) ở trên => Chỉ có (7,7,1) thoả mãn hay a=7; b=7; c = 1.

Vậy số cần tìm là: 77175

  tk nha, thanks

viết đề thấy không rõ

Đáp án:

13520 hoặc 63504.

Giải thích các bước giải:

�����¯=2��¯.���¯⇒1000��¯+���¯=2��¯.���¯⇒1000��¯=−���¯+2��¯.���¯⇒1000��¯=(2��¯−1)���¯(∗)⇒1000��¯ ⋮ 2��¯−1

Do (��¯;2��¯−1)=1

⇒1000 ⋮ 2��¯−1

2��¯−1≥19(��¯ nhỏ nhất là 10)

Ước dương của 1000

Ư(1000)={1;2;4;5;8;10;20;25;40;50;100;125;200;250;500;1000}

Do 2��¯−1 lẻ và 2��¯−1≥19

⇒(2��¯−1)∈{25;125}⊛2��¯−1=25⇒2��¯=26⇒��¯=13(∗)⇒1000.13=(2.13−1)���¯⇒13000=25���¯⇒���¯=520⊛2��¯−1=125⇒2��¯=126⇒��¯=63(∗)⇒1000.63=(2.63−1)���¯⇒63000=125���¯⇒���¯=504

Vậy số thoả mãn là 13520 hoặc 

14 tháng 1

Bài 3. 

\(\left\{{}\begin{matrix}a\left(a+b+c\right)=-\dfrac{1}{24}\left(1\right)\\c\left(a+b+c\right)=-\dfrac{1}{72}\left(2\right)\\b\left(a+b+c\right)=\dfrac{1}{16}\left(3\right)\end{matrix}\right.\)

Dễ thấy \(a,b,c\ne0\Rightarrow a+b+c\ne0\)

Chia (1) cho (2), ta được \(\dfrac{a}{c}=3\Rightarrow a=3c\left(4\right)\)

Chia (2) cho (3) ta được: \(\dfrac{c}{b}=-\dfrac{2}{9}\Rightarrow b=-\dfrac{9}{2}c\left(5\right)\).

Thay (4), (5) vào (2), ta được: \(-\dfrac{1}{2}c^2=-\dfrac{1}{72}\)

\(\Rightarrow c=\pm\dfrac{1}{6}\).

Với \(c=\dfrac{1}{6}\Rightarrow\left\{{}\begin{matrix}a=3c=\dfrac{1}{2}\\b=-\dfrac{9}{2}c=-\dfrac{3}{4}\end{matrix}\right.\)

Với \(c=-\dfrac{1}{6}\Rightarrow\left\{{}\begin{matrix}a=3c=-\dfrac{1}{2}\\b=-\dfrac{9}{2}c=\dfrac{3}{4}\end{matrix}\right.\)

Vậy: \(\left(a;b;c\right)=\left\{\left(\dfrac{1}{2};-\dfrac{3}{4};\dfrac{1}{6}\right);\left(-\dfrac{1}{2};\dfrac{3}{4};-\dfrac{1}{6}\right)\right\}\)

giải 

biến đổi đẳng thức thành

\(\overline{ab}.11.c=\overline{abcabc}\div\overline{abcabc=1001}\)

      \(\overline{ab}.c=1001\div11=91\)

phân tích ra thừa số nguyên tố   \(91=7.13\)do đó\(\overline{ab}.c\)chỉ có thể là  \(13.7\)hoặc  \(91.1\)

th1 cho \(\overline{ab}=13,c=7\)

th2 cho  \(\overline{ab}=91,c=1\)loại vì  b=c

vậy ta có  \(13.77.137=137137\)

29 tháng 3 2019

Sửa một chút nhé:

\(\overline{ab}.\overline{cc}.\overline{abc}=\overline{abcabc}\)

<=> \(\overline{ab}.\left(c.11\right).\overline{abc}=\overline{abc}.1000+\overline{abc}\)

<=> \(\overline{ab}.c.11=\overline{abc}\left(1000+1\right):\overline{abc}\)

<=> \(\overline{ab}.c.11=1001\)

<=> \(\overline{ab}.c=91\)

10898 nha bạn

19 tháng 12 2017

18908

20 tháng 8 2020

ab x cdc = abab

=> ab x cdc = ab x 100 + ab

=> ab x cdc = ab x 101 ( 1 )

=> cdc = 101 ( 2 )

=> c = 1 ; d = 0

15 tháng 9 2017

giúp tớ với nhé!

8 tháng 2 2021

Bài 5:

Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825

=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683

=> abc chia 1987 dư 304. Mà abc nhỏ nhất

=> abc = 304
Vậy số tự nhiên là 11111304

11 tháng 9 2019

Có cái gợi ý thì dễ rồi

\(\overline{1b5,a2c}=1,001\times\overline{abc}=\overline{abc,abc}\)

\(\overline{1b5,a2c}=\overline{abc,abc}\)

a=1,c=5,b=2

Đáp số:số abc cần tìm là 125