K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 4 2021

Lời giải:
Để PTTT tại $x=x_0$ song song với trục hoành thì $f'(x_0)=0$ và $f(x_0)\neq 0$

$f'(x)=4x^3-4x=0\Leftrightarrow x=0;1;-1$

Thử các giá trị $x$ này vô $f(x_0)$ xem có khác $0$ hay không ta thu được $x=\pm 1$

Tức là có 2 tiếp tuyến của $(C)$ song song với trục hoành.

3 tháng 11 2019

Chọn đáp án B

FOR REVIEW

Sai lầm thường gặp trong bài toán là vội vàng kết luận số tiếp tuyến thỏa mãn yêu cầu bài toán bằng số tiếp điểm khi chưa viết phương trình tiếp tuyến.

23 tháng 4 2017

Chọn C

10 tháng 12 2019

Đáp án B.

Cách 1: Các tiếp tuyến song song với trục hoành có hệ số góc bằng 0

phương trình tiếp tuyến của đồ thị hàm số tại điểm A(0;0) là y = 0, không thỏa mãn.

Vậy có đúng 1 tiếp tuyến song song với trục hoành.

Cách 2:

Tiếp tuyến của đồ thị hàm số song song với trục hoành là các tiếp tuyến tại các điểm cực trị có tung độ khác 0.

29 tháng 12 2017

1 tháng 5 2019

Đáp án A.

Hệ số góc tiếp tuyến của đồ thị (C) là

y ' = 0 ⇔ 4 − 4 sin 2 x = 0 ⇔ sin 2 x = 1 ⇔ x = π 4 + k π .

8 tháng 11 2017

6 tháng 12 2023

a) Đồ thị:

loading...  

b) Gọi giao điểm của đồ thị của hàm số y = x - 1 với trục tung, với trục hoành lần lượt là 2 điểm B và C

Thay x = 0 vào hàm số y = x - 1 ta có:

y = 0 - 1 = - 1

⇒ B(0; -1)

Thay y = 0 vào hàm số y = x - 1 ta có:

x - 1 = 0

⇔ x = 1

⇒ C(1; 0)

c) Gọi (t): y = ax + b (a 0)

Do (t) // (d) nên a = -2

⇒ (t): y = -2x + b

Thay y = -3 vào (d') ta có:

x - 1 = -3

⇔ x = -3 + 1

⇔ x = -2

Thay x = -2; y = -3 vào (t) ta có:

-2.(-2) + b = -3

⇔ 4 + b = -3

⇔ b = -3 - 4

⇔ b = -7

Vậy (t): y = -2x - 7

21 tháng 5 2018

Chọn A

1 tháng 4 2018

D

Vậy có 1 giá trị của tham số m thỏa mãn bài toán