K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

A B C H N M S O 1 2 3 4

gọi MH giao BA tại S, HN giao AC tại O

tứ giác ASHO có ^ASH = ^SAO = ^HOA = 90 độ

=> ASHO là HCN (vì là tứ giác có 3 góc vuông)

=> SH = AO, SA = HO (t/c HCN)

SH = AO mà SM = SH (vì M đối xứng H qua AB)

=> SM = AO

SA = HO mà HO = ON ( H đối xứng N qua AC)

=> SA = ON

xét tam g SAM vuông tại S

tam g OAN vuông tại O

có SM = OA (cmt)

SA = ON (cmt)

=> tam g SAM = tg OAN (2 cgv)

=> MA = AN (2 cạnh tương ứng)

b) xét tam g SAM vuông tại S

tam g SAH vuông tại S

có SM = SH (M đx Hqua AB)

SA là cạnh chung

=> tam g SAM = tam g SAH (2cgv)

=> \(\widehat{A_1}=\widehat{A_2}\) ( 2 góc tương ứng) (1)

cm tương tự ta được tam g OAH = tam g OAN (2 cạnh góc vuông)

=> \(\widehat{A_3}=\widehat{A_4}\) (2 góc t/ư) (2)

\(\widehat{A_2}+\widehat{A_3}=90^0\) ( tam g ABC vuông tại A ) (3)

từ (1), (2) và (3) => \(\widehat{A_1}+\widehat{A_4}=90^0\) (4)

từ (3) và (4) => \(\widehat{A_1}+\widehat{A_2}+\widehat{A_3}+\widehat{A_4}=180^0\) hay ^MAN =180ĐỘ

=> M,A,N thẳng hàng

mà MA = AN (cm câu a)

=> M đx N qua A

c)có ASHO là HCN (cm câu a)

=> ^SHO = 90ĐỘ hay ^MHN =90ĐỘ

=> tam g MHN vuông tẠI H

d)

có ^SHA + ^AHO = ^SHO = 90 ĐỘ (ASHO là HCN )

^AHO + ^CHO = ^AHC = 90ĐỘ (vì AH vuông BC)

=> ^SHA = ^CHO

xét tam g AHO vuông tại O

tam g ANO vuông tại O

có HO = ON (H đx N qua AC)

AO là cạnh chung

=> tam g AHO = tam g ANO (2cgv)

=> ^AHO = ^ANO ( 2 góc t/ư)

cm tương tự ta đc tam g AOC = g NOC (2cgv)

=> ^ OHC = ^ONC (2 góc t/ư)

mà ^OHC = ^SHA (cmt)

=> ^ ONC = ^SHA

có ^SHA + ^ AHO = 90 ĐỘ ( = ^ SHO)

mà ^ SHA = ^ONC (cmt)

^ANO = ^AHO (cmt)

=> ^ANO + ^ONC = 90ĐỘ = ^ANO

=> MN vuông NC

a: Ta có: H và M đối xứng nhau qua AB

nên AB là đường trung trực của MH

=>AM=AH

=>ΔAMH cân tại A

mà AB là đường cao

nen AB là tia phân giác của góc HAM(1)

Ta có: H và N đối xứng nhau qua AC

nên AC là đường trung trực của HN

=>AH=AN

=>ΔAHN cân tại A

mà AC là đường cao

nên AC là phân giác của góc HAN(2)

Ta có: AM=AH

AN=AH

DO đó: AM=AN

b: Từ (1) và (2) suy ra \(\widehat{MAN}=2\cdot90^0=180^0\)

=>M,A,N thẳng hàng

mà AM=AN

nên A là trung điểm của MN

c: Xét ΔNHM có

HA là đương trung tuyến

HA=MN/2

Do đó ΔNHM vuông tại H

d: Xét ΔCNA và ΔCHA có

CN=CH

NA=HA

CA chung

Do đó;ΔCNA=ΔCHA
Suy ra: \(\widehat{CNA}=\widehat{CHA}=90^0\)

=>CN\(\perp\)MN

a; Ta có: M và H đối xứng nhau qua AB

nên AB là đường trung trực của MH

=>AB vuông góc với MH tại trung điểm của MH

=>AH=AM

=>ΔAHM cân tại A

mà AB là đường cao

nên AB là tia phân giác của góc HAM(1)

Ta có: H và N đối xứng nhau qua AC

nên AC là đường trung trực của HN

=>AN=AH

=>ΔAHN cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAN(2)
Ta có: AH=AM

AN=AH

DO đó:AM=AN

b: Từ (1) và (2) suy ra \(\widehat{MAN}=\widehat{MAH}+\widehat{NAH}=2\cdot90^0=180^0\)

=>M,A,N thẳng hàng

mà AM=AN

nên A là trung điểm của MN

c: Xét ΔMHN có

HA là đường trung tuyến

HA=MN/2

Do đo: ΔMHN vuông tại H

d: Xét ΔCHA và ΔCNA có

CH=CN

\(\widehat{HAC}=\widehat{NAC}\)

AC chung

Do đo: ΔCHA=ΔCNA

Suy ra: \(\widehat{CHA}=\widehat{CNA}=90^0\)

=>MN\(\perp\)NC

a: Xét tứ giác APMN có

góc APM=góc ANM=góc PAN=90 độ

nên APMN là hình chữ nhật

b: Xét tứ giác AMIQ có

N là trung điểm chung của AI và MQ

MQ vuông góc với AI

Do đó: AMIQ là hình thoi

30 tháng 11 2014

DE là đg đx nên DE vuông góc với AB nên E là góc vuông

df là đg đx nên DF vuông góc với AC nên F là góc vuông.

tứ giác AEDM có E,A,F là góc vuông nên là HCN.

.làm vội k bít đúng k

 

a: Xét tứ giác ABDC có

O là trung điểm của AD
O là trung điểm của BC

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

b: Xét ΔADN có

O là trung điểm của AD
M là trung điểm của AN

Do đó: OM là đườg trung bình

=>OM=1/2ND

25 tháng 10 2019

Bài này không khó đâu bạn ạ

a) Xét ΔBAC có

E là trung điểm của AB(gt)

M là trung điểm của BC(gt)

⇒EM là đường trung bình của ΔBAC(đ/n đường trung bình của tam giác)

⇒EM//AC và \(EM=\frac{AC}{2}\)(định lí 2 về đường trung bình của tam giác)

Xét tứ giác EMAC có

EM//AC(cmt) và \(\widehat{EAC}=90\) độ(ΔBAC vuông tại A)

nên EMAC Là hình thang vuông(đ/n hình thang vuông)

b) Ta có : \(EM=\frac{AC}{2}\)(cmt)(1)

Do F và E đối xứng nhau qua M nên ta có:

M là trung điểm của EF

\(\Rightarrow EM=\frac{EF}{2}\)(2)

từ (1) và (2) suy ra AC=EF

Ta có: EM//AC(cmt)

\(F\in EM\)(GT)

nên EF//AC

Xét tứ giác AEFC có EF=AC(cmt) và EF//AC(cmt)

nên AEFC là hình bình hành(dấu hiệu nhận biết hình bình hành)

\(\widehat{EAC}=90\)độ(cmt)

nên AEFC là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)