K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2016

Số nguyên x , y là:

\(\frac{x}{9}=\frac{1}{y}\)

=> x.y=9.1

=> x và y chỉ có thể là 3

Vậy x = 3; y = 3

t*** mik nhá

2 tháng 2 2016

x=2k

y=7k với kEZ, k khác 0

100% dung

2 tháng 2 2016

Với x/y=2/7

=> x=2k ; y=7k (k \(\in\) Z ; k \(\ne\) 0

1 tháng 1 2023

Ta có x/2 = 1/6 + 3/y ⇒ x/2 - 1/6 = 3/y ⇒ 3x - 1/ 6 = 3/y

Vậy y( 3x - 1 ) = 18

Mà x; y nguyên nên 3x - 1 nguyên và y; 3x - 1 ϵ Ư( 18 ) = { -1; 1; 2; -2; -3; 3; -6; 6; 18; -18 }

Vì 3x - 1 chia 3 dư 2 nên ( 3x - 1 ) ϵ { 2; -1 }

Nếu 3x - 1 = 2 ⇒ x = 1; y = 9

Nếu 3x - 1 = -1 ⇒ x = 0; y = -18

Vậy các cặp số nguyên ( x; y ) cần tìm là ( 1; 9 ) ; ( 0; -18 )

\(\dfrac{x}{18}=\dfrac{4}{3}\Rightarrow x=\dfrac{18.4}{3}=24\\ \dfrac{20}{y}=\dfrac{4}{3}\Rightarrow y=\dfrac{20.3}{4}=15\\ \dfrac{z}{21}=\dfrac{4}{3}\Rightarrow z=\dfrac{21.4}{3}=28\)

Ta có:

\(\dfrac{x}{18}\) = \(\dfrac{4}{3}\)

⇒ x = \(\dfrac{4}{3}\) . 18

⇒ x = 24

\(\dfrac{20}{y}\) = \(\dfrac{4}{3}\)

⇒ y = 20 : \(\dfrac{4}{3}\)

⇒ y = 15

\(\dfrac{z}{21}\) = \(\dfrac{4}{3}\)

⇒ z = \(\dfrac{4}{3}\) . 21

⇒ z = 28

⇒ x + y + z = 24 + 15 + 28 = 67

Vậy x + y + z = 67

 

 

28 tháng 3 2020

\(\frac{x}{y}=\frac{2}{7}\)(x, y \(\inℤ\))

=> x = 2m;  y = 7m     (m \(\inℤ,m\ne0\))

28 tháng 3 2020

Ta có \(\frac{x}{y}=\frac{2}{7}\left(x,y\in Z\right)\)

\(\Rightarrow\hept{\begin{cases}x=2a\\y=7b\end{cases}}\)với \(a,b\inℤ;b\ne0\)

3 tháng 11 2019

Ta có: \(\frac{x}{6}-\frac{1}{2}=\frac{1}{y}\)

\(\Leftrightarrow\frac{x}{6}-\frac{3}{6}=\frac{1}{y}\)

\(\Leftrightarrow\frac{x-3}{6}=\frac{1}{y}\)

\(\Leftrightarrow\left(x-3\right)y=6\)

Lập bảng nốt thôi

3 tháng 1 2018

BÀI 1:

          \(3x+23\)\(⋮\)\(x+4\)

\(\Leftrightarrow\)\(3\left(x+4\right)+11\)\(⋮\)\(x+4\)

Ta thấy   \(3\left(x+4\right)\)\(⋮\)\(x+4\)

nên  \(11\)\(⋮\)\(x+4\)

hay   \(x+4\)\(\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Ta lập bảng sau  

\(x+4\)     \(-11\)     \(-1\)            \(1\)         \(11\)

\(x\)             \(-15\)      \(-5\)       \(-3\)           \(7\)

Vậy     \(x=\left\{-15;-5;-3;7\right\}\)

BÀI 2 

      \(\left(x+5\right)\left(y-3\right)=11\)

\(\Rightarrow\)\(x+5\)  và   \(y-3\) \(\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Ta lập bảng sau:

\(x+5\)        \(-11\)      \(-1\)          \(1\)            \(11\)

\(x\)                 \(-16\)     \(-6\)        \(-4\)             \(6\)

\(y-3\)        \(-1\)      \(-11\)         \(11\)            \(1\)

\(y\)                    \(2\)        \(-8\)            \(14\)           \(4\)

Vậy.....

    

3 tháng 1 2018

bài 1:

   3x + 23 chia hết cho x + 4

ta có: 3x + 23 chia hết cho x + 4

   mà x + 4 chia hết cho x + 4

=> 3(x + 4) chia hết cho x + 4

=> (3x + 23) - 3(x + 4)  chia hết cho x + 4

3x + 23 - 3x - 12 chia hết cho x + 4

=> 11 chia hết cho x + 4

=> x + 4 thuộc  Ư(11)

mà Ư(11)= {-11;-1;1;11}

=> x + 4 thuộc {-11;-1;1;11}

=> x thuộc {-15;-5;-3;7}

 Vậy x thuộc {-15;-5;-3;7} thì 3x + 23 chia hết cho x + 4

bài 2:

       (x + 5).(y-3) = 11

 ta có bảng:

   x + 5        -11         -1            1              11

  y - 3           -1         -11          11              1

  x               -16        -6             -4             6 

  y                2          -8             14            4

vậy (x,y) thuộc {(-16;2);(-6;-8);(-4;14);(6;40} thì (x + 5).(y - 3) = 11

Chúc bạn học giỏi ^^

21 tháng 9 2023

\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)

Áp dụng Bđt Bunhiacopxki :

\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)

Đặt \(t=x+y+z+8\)

\(\left(1\right)\Leftrightarrow t^2=56t-784\)

\(\Leftrightarrow t^2-56t+784=0\)

\(\Leftrightarrow\left(t-28\right)^2=0\)

\(\Leftrightarrow t=28\)

\(\Leftrightarrow x+y+z+8=28\)

\(\Leftrightarrow x+y+z-6=14\)

\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài