Số học sinh khối 6 của 1 trường chưa đến 300 HS. Biết rằng khi xếp hàng 8 hàng 12 hay hàng 15 đều thừa 2 HS nhưng khi xếp hàng 22 thì vừa đủ. Tính số học sinh khối 6 trường đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta tìm BCNN của 2,5,6
2=2
5=5
6=2.3
BCNN là 2.3.5=30
30 | 60 | 90 | 120 | 150 |
29 | 59 | 89 | 119 | 149 |
duy chỉ có 119 chia hết cho 7
vậy số học sinh là 119 học sinh
BCNN của2,5,6 là:
2=2
5=5
6=3.2
BCNN của 2,5,6 là:2.3.5=50
30 | 60 | 90 | 120 | 150 |
29 | 59 | 89 | 119 | 149 |
Mà số học sinh xếp 7 hàng thì vừa đủ
=>Số học sinh chia hết cho 7
=>Số học sinh = 119 học sinh
# mui #
Gọi số học sinh khối 6 là x
Theo đề, ta có: \(x-3\in BC\left(10;12;15\right)\) và \(x\in B\left(11\right)\)
=>\(x-3\in B\left(60\right)\) và \(x\in B\left(11\right)\)
mà x<=400
nên x-3=360
=>x=363
số hs khối 6 của trường trong khoảng từ 500 đến 1000 hs. Khi xếp hàng 8, hàng 18, hàng 27 đều vừa đủ. Tính số hs khối 6, biết khi xếp hàng 20 thì thừa 4 học sinh.
gọi số học sinh của trường đó là x ( học sinh , x thuộc N* , 500 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 1000)
theo bài ra ta có : x chia hết cho 8
x chia hết cho 18
x chia hết cho 27
x chia hết cho 20-4
x thuộc BC ( 8 ,18 , 27 , 20 )
ta có P; 8 = 23
18= 2.32
27 = 33
20 = 22.5
suy ra BCNN ( 8, 18 , 27 , 20 ) = 23.32. 5 = 360
suy ra BC (8 , 18 ,27 ,20 ) B(360 ) =\([\)0, 360 , 720 , 1080 , ....\(]\)
x - 4 thuộc \([0,360,720,1080,...]\)
x thuộc \([4,364,724,1084,...]\)
mà 500 nhỏ hơn hoặc = x nhỏ hơn hoăc= 1000 nêm x= 724
Vậy có 724 học sinh ở trường đó
Gọi số học sinh là x
Theo đề, ta có; \(\left\{{}\begin{matrix}x+1\in BC\left(2;3;4;5;6\right)\\x\in B\left(7\right)\\x< =300\end{matrix}\right.\Leftrightarrow x=119\)
Gọi số học sinh khối 6 của trường đó là x (x ∈ N*; x < 300).
Theo đề bài ta có: x + 1 ⋮ 2 , x + 1 ⋮ 3 , x + 1 ⋮ 4 , x + 1 ⋮ 5; x ⋮ 7
Do đó: x + 1 là BC ( 2 ; 3 ; 4 ; 5 )
BCNN ( 2 ; 3 ; 4 ; 5 ) = 60
BC ( 2 ; 3 ; 4 ; 5 ) = B (60) = { 0; 60; 120; 180; 240; 300; 360; … }
⇒ x + 1 ∈ { 60; 120; 180; 240; 300; 360; … }
Vì x ∈ N* nên x ∈ { 59; 119; 179; 239; 299; 359; … }
Vì x < 300 nên x ∈ { 59; 119; 179; 239; 299 }
Mà x ⋮ 7 nên x = 119.
Vậy số học sinh khối 6 của trường đó là 119 học sinh.
Gọi số học sinh khối 6 của trường đó là x (học sinh) (x ∈ N*)
Theo đề bài khi xếp hàng 4, hàng 5, hàng 6 đều thiếu 1 học sinh nên x + 1 chia hết cho 4, 5, 6. Mặt khác xếp hàng 7 thì vừa đủ nên x ⋮ 7. Mà số học sinh chưa đến 200 học sinh nên x < 200.
BCNN ( 4, 5, 6 ) = 60
BC ( 4, 5, 6 ) = B ( 60 ) = { 0; 60; 120; 180; 240; … }
Từ đó x + 1 ∈ { 60; 120; 180; 240; … }
Do đó x ∈ { 59; 119; 179; 239; … }
Mà x < 200. Nên x = 119 hoặc x = 179
Ta có 119 = 17 . 7 ; 179 không chia hết cho 7
Vậy x = 119 thích hợp
Số học sinh khối 6 của trường đó là 119 học sinh
Gọi số học sinh khối 6 của trường đó là x (học sinh) (x ∈ N*)
Theo đề bài khi xếp hàng 4, hàng 5, hàng 6 đều thiếu 1 học sinh nên x + 1 chia hết cho 4, 5, 6. Mặt khác xếp hàng 7 thì vừa đủ nên x ⋮ 7. Mà số học sinh chưa đến 200 học sinh nên x < 200.
BCNN ( 4, 5, 6 ) = 60
BC ( 4, 5, 6 ) = B ( 60 ) = { 0; 60; 120; 180; 240; … }
Từ đó x + 1 ∈ { 60; 120; 180; 240; … }
Do đó x ∈ { 59; 119; 179; 239; … }
Mà x < 200. Nên x = 119 hoặc x = 179
Ta có 119 = 17 . 7 ; 179 không chia hết cho 7
Vậy x = 119 thích hợp
Số học sinh khối 6 của trường đó là 119 học sinh.
Gọi số học sinh của trường là x (học sinh); x ϵ N*
Theo đề bài, ta có:
x ⋮ 11
x < 1000
x - 3 ⋮ 10; ⋮ 12; ⋮ 15
⇒ x ϵ Ư (11)
x - 3 ϵ ƯC (10, 12, 15)
Ta có: 10 = 2 x 5
Gọi số học sinh của trường là x (học sinh); x ϵ N*
Theo đề bài, ta có:
x ⋮ 11
x < 1000
x - 3 ⋮ 10; ⋮ 12; ⋮ 15
⇒ x ϵ Ư (11)
x - 3 ϵ ƯC (10, 12, 15)
Ta có: 10 = 2 x 5