Cho tam giác ABC kẻ BK vuông AC.K thuộc đường thẳng AC.Biết B=35 độ, BC=8cm,C=28 độ.Tính BK,AB,AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAK vuông tại A và ΔBIK vuông tại I có
BK chung
góc ABK=góc IBK
=>ΔBAK=ΔBIK
=>KA=KI
c: góc DAI+góc BIA=90 độ
góc CAI+góc BAI=90 độ
mà góc BIA=góc BAI
nên góc DAI=góc CAI
=>AI là phân giác của góc DAC
a/ \(BC=\sqrt{AB^2+AC^2}=10cm\)
BK là pg \(\widehat{ABC}\)
\(\Rightarrow\dfrac{AK}{CK}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)
=> \(\dfrac{AK}{3}=\dfrac{CK}{5}=\dfrac{AC}{8}=1\)
=> AK = 3cm ; CK = 5 cm
b/ Xét t/g ABC và t/g HBA có
\(\widehat{ABC}\) chung
\(\widehat{BAC}=\widehat{AHB}=90^o\)
=> t/g ABC ~ t/g HBA
=> \(\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
=> \(AB^2=BC.HB\)
c/ \(\dfrac{BC}{AC}=\dfrac{10}{6}=\dfrac{5}{3}\)
t/g ABC ~ t/g HBA vs tỉ số đồng dạng là 5/3
a) xét \(\Delta ABC\)CÓ
\(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=36+64=100\)
VÌ \(100=100\)
\(\Rightarrow BC^2=AB^2+AC^2\)
VẬY \(\Delta ABC\) VUÔNG TẠI A
trong tam giác ABC ta có :
AB2=62=36
AC2=82=64
BC2=102=100
ta thấy : 100=36+64 => BC2=AC2=AB2( định lý pytago đảo )
=> tam giác ABC vuông tại A
CHÚC BẠN HỌC TỐT !!!
a, Sửa: AB=8(cm)
Áp dụng PTG: \(BC=\sqrt{AC^2-AB^2}=6\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}BK=\dfrac{AB\cdot BC}{AC}=4,8\left(cm\right)\\AK=\dfrac{AB^2}{AC}=6,4\left(cm\right)\end{matrix}\right.\)
b, Áp dụng HTL: \(\left\{{}\begin{matrix}AK\cdot AC=AB^2\\AH\cdot AM=AB^2\end{matrix}\right.\Leftrightarrow AK\cdot AC=AH\cdot AM\)
c, Đề sai
a) Xét ΔBAK vuông tại A và ΔBCK vuông tại C có
BK chung
BA=BC(ΔBAC cân tại B)Do đó: ΔBAK=ΔBCK(cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{ABK}=\widehat{CBK}\)(hai góc tương ứng)
mà tia BK nằm giữa hai tia BA,BC
nên BK là tia phân giác của \(\widehat{ABC}\)(đpcm)
b) Ta có: ΔBAK=ΔBCK(cmt)
nên KA=KC(Hai cạnh tương ứng)
Ta có: BA=BC(ΔABC cân tại B)
nên B nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có:KA=KC(cmt)
nên K nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng) (2)
Từ (1) và (2) suy ra BK là đường trung trực của AC
hay BK\(\perp\)AC(đpcm)
Vì BK là đường trung trực của AC(cmt)
nên BK vuông góc với AC tại trung điểm của AC
mà BK cắt AC tại I(gt)
nên BK\(\perp\)AC tại I và I là trung điểm của AC
Ta có: I là trung điểm của AC(cmt)
nên \(CI=\dfrac{AC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Áp dụng định lí Pytago vào ΔBIC vuông tại I, ta được:
\(BC^2=BI^2+IC^2\)
\(\Leftrightarrow BI^2=BC^2-IC^2=10^2-3^2=91\)
hay \(BI=\sqrt{91}cm\)
Vậy: \(BI=\sqrt{91}cm\)
a) Xét tam giác AHD và tam giác CKD có:
AHD=CKD=90
\(D_1=D_2\) (2 góc đối đỉnh)
=> tam giác AHD đồng dạng tam giác CKD (g-g)
=> đpcm
b) Xét tam giác AHB và tam giác CKB có
AHB=BKC=90
ABD=DBC ( BD là tia phân giác ABC)
=> Tam giác AHB đồng dạng CKB (g-g)
=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)
a)Hai tam giác vuông \(\Delta AHC\approx\Delta BKC\)vì có chung góc nhọn C
b) Vì tam giác AHC đồng dạng tam giác BKC nên
\(\frac{AH}{BK}=\frac{HC}{KC}=\frac{AC}{BC}=\frac{4}{3}\)
Theo định lý Pytago ta có
\(AH=\sqrt{8^2-3^2}=\sqrt{55}\)
\(\frac{AH}{BK}=\frac{\sqrt{55}}{BK}=\frac{4}{3}\)
\(\Rightarrow BK=\frac{3\sqrt{55}}{4}\)
Theo Pytago ta có
\(KC=\sqrt{6^2-\left(\frac{3\sqrt{55}}{4}\right)^2}=\frac{9}{4}\left(cm\right)\)
\(KA=8-\frac{9}{4}=\frac{23}{4}\left(cm\right)\)
a, Xét tam giác BKC vuông tại K
\(sinKCB=\dfrac{BK}{BC}\Rightarrow BK=sinKCB.BC\approx3,75cm\)
\(cosKCB=\dfrac{KC}{BC}\Rightarrow KC=BC.cosKCB\approx7cm\)
Xét tam giác BKA vuông tại K
\(sinKAB=\dfrac{BK}{AB}\Rightarrow AB=BK.sinKAB\approx3,34cm\)
bạn ktra lại đoạn AK giúp mình nhé