K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2022

a)3x(x-2) + 5(2-x)

=3x(x-2) - 5(x-2)

=(x-2)(3x-5)

b)81x^4 + 4

=(9x^2)^2 + 2^2

= (9x^2)^2 + 36x^2 +2^2 - 36x^2

= ( 9x^2 + 2 ) - (6x)^2

= ( 9x^2 + 2 -6x )( 9x^2 + 2 + 6x )

 

27 tháng 8 2022

.

 

 

28 tháng 8 2021

a) -4x2 + 8x - 4

= - (4x2 - 8x + 4)

= - (2x - 2)2

b) -x52 + 10 x - 5

= - 5(x2 - 2x + 1)

= - 5(x - 1)2

28 tháng 8 2021

-4x^2+8x-4

=-4.(x^2-2x+1)

=-4.(x-1)^2

17 tháng 1 2021

undefined

10 tháng 8 2023

\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)

\(=4a^2b^2-2ab\left(a^2+b^2-c^2\right)+2ab\left(a^2+b^2-c^2\right)-\left(a^2+b^2-c^2\right)^2\)

\(=2ab\left[2ab-\left(a^2+b^2-c^2\right)\right]+\left(a^2+b^2-c^2\right)\left[2ab-\left(a^2+b^2-c^2\right)\right]\)

\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)

\(=\left(a^2+ab+ab+b^2-c^2\right)\left[c^2-\left(a^2-ab-ab+b^2\right)\right]\)

\(=\left[a\left(a+b\right)+b\left(a+b\right)-c^2\right]\left[c^2-\left(a\left(a-b\right)-b\left(a-b\right)\right)\right]\)

\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)

\(=\left[\left(a+b\right)^2-c\left(a+b\right)+c\left(a+b\right)-c^2\right]\left[c^2+c\left(a-b\right)-c\left(a-b\right)-\left(a-b\right)^2\right]\)

\(=\left[\left(a+b\right)\left(a+b-c\right)+c\left(a+b-c\right)\right]\left[c\left(c+a-b\right)-\left(a-b\right)\left(c+a-b\right)\right]\)

\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)

AH
Akai Haruma
Giáo viên
17 tháng 11 2021

Lời giải:

$(x^3-2xy+3x^2)(x-2y)=x(x^2-2xy+3x)(x-2y)$

23 tháng 10 2021

Tham khảo:https://hoc247.net/hoi-dap/toan-8/phan-tich-da-thuc-x-7-x-2-1-thanh-nhan-tu-faq417522.html

23 tháng 10 2021

\(=x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2+x^2-x^2+x-x+1\\ =\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

\(x^3-x^2y+3x-3y\)

\(=x^2\left(x-y\right)+3\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+3\right)\)

9 tháng 9 2021

\(=x^2\left(x-y\right)+3\left(x-y\right)=\left(x^2+3\right)\left(x-y\right)\)

\(5x\left(x-1\right)-x\left(x-1\right)\)

\(=\left(x-1\right)\left(5x-x\right)\)

\(=4x\left(x-1\right)\)

b) \(x^2\left(x+1\right)-x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x\right)\)

\(=x\left(x+1\right)\left(x-1\right)\)

c) \(x^2+4y^2+4xy\)

\(=\left(x+2y\right)^2\)

1 tháng 10 2016

a) \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)

\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)

\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)

\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)

b) \(3x^4y^2+3x^3y^2+3xy^2+3y^2\)

\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)

\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)

\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)

\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)

\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)

c) \(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)

17 tháng 8 2018

\(\left(x^2+x\right)^2-2x^2-2x-15\)

\(=\left(x^2+x\right)^2-\left(2x^2+2x+15\right)\)

\(=\left(x^2+x\right)^2-\left[\left(2x^2+2x\right)+15\right]\)

\(=\left(x^2+x\right)^2-\left[2.\left(x^2+x\right)+15\right]\)

\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-15\) \(\left(1\right)\)

đặt \(x^2+x=t\)

\(\left(1\right)\)\(=\)  \(t^2-2t-15\)

            \(=\left(t-1\right)^2-16\)

            \(=\left(t-1-4\right)\left(t-1+4\right)\)

           \(=\left(t-5\right)\left(t+3\right)\)

thay \(t=x^2+x\) ta có

\(\left(1\right)=\left(x^2+x-5\right)\left(x^2+x+3\right)\)

các câu còn lại tương tự nha

học tốt 

\(x^4-x^3-x^2+1\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(x-1\right)\left(x^3-x-1\right)\)

\(-x-y^2+x^2-y\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(-\left(y-x+1\right)\right)\left(y+x\right)\)

\(x^2-y^2-x-y\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(-\left(y-x+1\right)\right)\left(y+x\right)\)

\(x^2-y^2+4-4x\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(-\left(y-x+2\right)\right)\left(y-x+2\right)\)