\(\frac{x-1}{100}+\frac{x-10}{91}+\frac{x-17}{84}=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình 1:
\(\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}=10\)
\(\Rightarrow\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}-10=0\)
\(\Rightarrow\left(\frac{x-85}{15}-1\right)+\left(\frac{x-74}{13}-2\right)+\left(\frac{x-67}{11}-3\right)+\left(\frac{x-64}{9}-4\right)=0\)
\(\Rightarrow\frac{x-85-15}{15}+\frac{x-74-26}{13}+\frac{x-67-33}{11}+\frac{x-64-36}{9}=0\)
\(\Rightarrow\frac{x-100}{15}+\frac{x-100}{13}+\frac{x-100}{11}+\frac{x-100}{9}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)=0\)
Do \(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy x = 100.
Phương trình 3:
\(\frac{1909-x}{91}+\frac{1907-x}{93}+\frac{1905-x}{95}+\frac{1903-x}{97}+4=0\)
\(\Rightarrow\left(\frac{1909-x}{91}+1\right)+\left(\frac{1907-x}{93}+1\right)+\left(\frac{1905-x}{95}+1\right)+\left(\frac{1903-x}{97}+1\right)=0\)
\(\Rightarrow\frac{1909-x+91}{91}+\frac{1907-x+93}{93}+\frac{1905-x+95}{95}+\frac{1903-x+97}{97}=0\)
\(\Rightarrow\frac{2000-x}{91}+\frac{2000-x}{93}+\frac{2000-x}{95}+\frac{2000-x}{97}=0\)
\(\Rightarrow\left(2000-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
Do \(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\ne0\)
\(\Rightarrow2000-x=0\)
\(\Rightarrow x=2000\)
Vậy x = 2000.
\(\Leftrightarrow\left(\frac{x+14}{86}+1\right)+\left(\frac{x+15}{85}+1\right)+\left(\frac{x+16}{84}+1\right)+\left(\frac{x+17}{83}+1\right)+\left(\frac{166}{4}-4\right)=0\)
\(\Leftrightarrow\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
\(\Leftrightarrow\left(x+100\right).\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(x+100\right)=0\Rightarrow x=-100\left(\text{vì }\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)\ne0\)
(x+100)*(1/99+1/96+1/93+1/91)=0
suy ra x+100=0
suy ra x=-100
a) (x-1)x(x+1)(x+2) = 24
<=> [(x-1)(x+2)][x(x+1) = 24
<=> (x^2+x-2)(x^2+x) = 24 (1)
Đặt t=x^2+x-1 = (x+1/2)^2 - 5/4 (*)
(1) trở thành (t-1)(t+1) = 24
<=> t^2 - 1 - 24 = 0
<=> t^2 - 25 = 0
<=> t^2 = 25
<=> t=5 hoặc t=-5
Mà t >= -5/4 ( từ *) => t = (x+1/2)^2-5/4 = 5
<=> (x+1/2)^2 = 25/4
Đến đây dễ r`
c) x^4 + 3x^3 + 4x^2 + 3x + 1 = 0
<=> x^4 + x^3 + 2x^3 + 2x^2 + 2x^2 + 2x + x + 1 = 0
<=> (x+1)(x^3 + 2x^2 + 2x + 1) = 0
<=> (x +1)(x^3 + x^2 + x^2 + x + x + 1) = 0
<=> (x+1)^2.(x^2+x+1) = 0
Mà x^2+x+1 = (x+1/2)^2 + 3/4 > 0
Nên x+1=0 <=> x=-1
Vậy ...
c)Ta có: \(x^4+3x^3+4x^2+3x+1=0\)
\(\Leftrightarrow x\left(x^3+2x^2+2x+1\right)+1\left(x^3+2x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+2x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)
Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\) nên vô nghiệm
Suy ra x + 1 =0 hay x = -1
Tìm x, biết:
3(x+2)(x+5) +5(x+5)(x+10) +7(x+10)(x+17) =x(x+2)(x+17) (x∉−2;−5;−10;−17)
2(x−1)(x−3) +5(x−3)(x−8) +12(x−8)(x−20) −1x−20 =−34 (x∉1;3;8;20)
x+110 +2+111 x+112 =x+113 +x+114
x−1030 +x−1443 +x−595 +x−1488 =0
X= 101
K NHA
Bo sung đề bai : Tinh gia tri cua x ?