K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

A B C M N H P Q

Xét tam giác ABN và tam giác ACM có 

\(\hept{\begin{cases}AB=AC\\AM=AN\left(\frac{1}{3}AB=\frac{1}{3}AC\right)\\\widehat{A}\text{ chung}\end{cases}}\Rightarrow\Delta ABN=\Delta ACM\left(\text{c.g.c}\right)\)

=> BN = CM (cạnh tương ứng)

=> \(\widehat{ABN}=\widehat{ACM}\)(cạnh tương ứng)

b) Vì \(\hept{\begin{cases}\widehat{ABC}=\widehat{ACB}\left(\Delta ABC\text{ cân}\right)\\\widehat{ABN}=\widehat{ACM}\left(cmt\right)\end{cases}}\Rightarrow\widehat{ABC}-\widehat{ABN}=\widehat{ACB}-\widehat{ACM}\)

=> \(\widehat{NBC}=\widehat{MCB}\text{ hay }\widehat{HBC}=\widehat{HCB}\Rightarrow\Delta HBC\text{ cân tại H }\left(ĐPCM\right)\)

=> HB = HC

c) Qua H kẻ đường thẳng PQ // BC (Q \(\in AC;P\in AB\))

Vì PQ//BC

=> \(\hept{\begin{cases}\widehat{APQ}=\widehat{ABC}\left(\text{đồng vị}\right)\\\widehat{AQP}=\widehat{ACB}\left(\text{ đồng vị}\right)\end{cases}}\text{mà }\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{APQ}=\widehat{AQP}\)

=> Tam giác APQ cân tại A

=> AP = AQ

=> PB = QC

Xét tam giác PBH và tam giác QCH có  : 

\(\hept{\begin{cases}PB=QC\left(cmt\right)\\HB=HC\left(\text{câu b}\right)\\\widehat{PBH}=\widehat{QCH}\left(\Leftrightarrow\widehat{ABN}=\widehat{ACM}\left(\text{câu a}\right)\right)\end{cases}\Rightarrow\Delta PBH}=\Delta QCH\left(c.g.c\right)\)

=> PH = QH (cạnh tương ứng)

Xét tam giác APH và tam giác AQH có : 

\(\hept{\begin{cases}AP=AQ\\PH=QH\\AH\text{ chung}\end{cases}}\Rightarrow\Delta APH=\Delta AQH\left(c.c.c\right)\) 

=> \(\widehat{AHP}=\widehat{AHQ}\left(\text{cạnh tương ứng}\right)\text{ mà }\widehat{AHP}+\widehat{AHQ}=180^{\text{o}}\Rightarrow\widehat{AHP}=\widehat{AHQ}=90^{\text{o}}\Rightarrow AH\perp PQ\)

Lại có PQ//BC

=> AH \(\perp\)BC (đpcm)

a) Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(gt)

Do đó: ΔABN=ΔACM(c-g-c)

Suy ra: BN=CM(hai cạnh tương ứng)

b) Xét ΔAHB và ΔAHC có 

AB=AC(ΔABC cân tại A)

AH chung

HB=HC(H là trung điểm của BC)

Do đó: ΔAHB=ΔAHC(c-c-c)

Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

hay AH⊥BC(đpcm)

c) Ta có: AH⊥BC(cmt)

mà H là trung điểm của BC(gt)

nên AH là đường trung trực của BC

⇔EH là đường trung trực của BC

⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)

Xét ΔEBC có EB=EC(cmt)

nên ΔEBC cân tại E(Định nghĩa tam giác cân)

20 tháng 2 2021

Cảm ơn ạ =))

1 tháng 3 2021

a) Chứng minh CM=BN :AM = CN (gt)AC = BC ( cạnh tam giác đều)CAM^ = BCN^ = 60*=> Δ ACM = Δ CBN (c.g.c)=> CM = BN

b) Chứng minh góc BOC không đổi khi M và N di động trên hai cạnh AB và AC thỏa mãn AM=CNΔ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60*=> BOC^ = 180* - (CBN^ + BCM^) = 180* - 60* = 120* không đổi

1 tháng 3 2021

Bớt buff đi bạn ơi :)

5 tháng 9 2017

A B C M N D K I L

Ta có Tam giác ABN= BCK= CAN

=> góc KBC=ẠCN

=> góc DLI = Góc LBC+ LCB=LCB+ACN=60

CMTT: AIL=IDL=60

=> tam giác DIL đều

ÁP dụng định lí Mêlelauyt tam giác BIL có cát tuyến AKC

\(\frac{AI}{AN}.\frac{CN}{CB}.\frac{KB}{KI}=1\)=>\(\frac{AI}{KI}=\frac{3}{2}=\frac{BL}{IK}\)=>BI=IL

=> BI=IL=DI

=> tam giác BDL vuông

(Hơi tắt-chắc sai)

5 tháng 9 2017

Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O), các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H.

a)      Chứng minh tứ giác BCEF nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác.

b)      Đường thẳng EF cắt đường thẳng BC tại M và cắt đường tròn (O) tại K và T (K nằm giữa M và T) chứng minh: MK.MT = ME.MF

c)       Chứng minh tứ giác IDKT là tứ giác nội tiếp

d)      Đường thẳng vuông góc với IH cắt đường thẳng AB, AC và AD lần lượt tại N, S và P. Chứng minh: P là trung điểm của đoạn thẳng NS.