cho A= 2 ab2-2an-5a2n+5a2b2 / 5an+a2b2-5ab2-a2n
Tính giá trị của A khi : a=15 , b=8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=2a^{n+1}-3a^n+5a^{n+1}-7a^n+3a^{n+1}\)
\(=\left(2+5+3\right)a^{n+1}+\left(-3-7\right)a^n\)
\(=10a^{n+1}-10a^n\)
\(=10a^n\left(a-1\right)\)
\(b,P=10a^n\left(a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}10a^n=0\\a-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)
#\(Toru\)
a) Vì x ,y tỉ lệ nghịch với nhau
\(\Rightarrow\) \(x.y=a\Rightarrow y\dfrac{a}{x}\)
b)ta có x.y=a \(\Rightarrow8.15=120\)
nếu x=6 thì y=\(\dfrac{120}{6}=30\)
nếu x=-10 thì \(y=-\dfrac{120}{10}=-12\)
c) ta có x.y=a \(\Rightarrow x=\dfrac{a}{y}\)
nếu y= 2 thì \(x=\dfrac{120}{2}=60\)
nếu y= -30 thì \(x=-\dfrac{120}{30}=-4\)
Đáp án C
Phương pháp: Thêm bớt hạng tử để được các hằng đẳng thức.
Sử dụng kết quả A 2 + B 2 + C ≥ C để tìm min F và chú ý tìm điều kiện để dấu “=” xảy ra. 2
Cách giải: F = a 4 b 4 + b 4 a 4 − a 2 b 2 + b 2 a 2 + a b + b a
= a 2 b 2 − 1 2 + b 2 a 2 − 1 2 + a b + b a 2 + a b + b a − 4 ≥ a 2 + b 2 a b − 4 ≥ 2 − 4 = − 2
Dấu “=” xảy ra ⇔ a ; b = − 1 ; 1 hoặc a ; b = 1 ; − 1
Vậy M i n y = − 2 tại a ; b = − 1 ; 1 hoặc a ; b = 1 ; − 1
điều kiện:b^2 khác n. a khác 5
A=\(=\frac{2ab^2-2an-5a^2n+5a^2b^2}{5an-5ab^2+a^2b^2-a^2n}=\frac{2a\left(b^2-n\right)+5a^2\left(b^2-n\right)}{-5a\left(b^2-n\right)+a^2\left(b^2-n\right)}=\frac{\left(b^2-n\right)\left(2a+5a^2\right)}{\left(b^2-n\right)\left(a^2-5a\right)}=\frac{a\left(2+5a\right)}{a\left(a-5\right)}=\frac{2+5a}{a-5}\)
thay a vào rồi tính là ok