||2x-1|+1/2|=3/4
giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow6x-3-4x+20< =4x-1+24\)
=>2x+17-4x-23<=0
=>-2x-6<=0
=>-2x<=6
hay x>=-3
\(\Leftrightarrow\dfrac{6x-3-4x+20-4x+1-24}{12}\le0\)
\(\Rightarrow\left\{{}\begin{matrix}-2x-6< 0\\-2x-6\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x\ne-3\end{matrix}\right.\)
\(\left(x-\dfrac{3}{2}\right)\times\left(2x+1\right)>0\)
Th1:
\(x-\dfrac{3}{2}>0\Leftrightarrow x>\dfrac{3}{2}\)
\(2x+1>0\Leftrightarrow2x>1\Leftrightarrow x>\dfrac{1}{2}\)
( 1 )
Th2:
\(x-\dfrac{3}{2}< 0\Leftrightarrow x< \dfrac{3}{2}\)
\(2x+1< 0\Leftrightarrow2x< -1\Leftrightarrow x< -\dfrac{1}{2}\)
( 2 )
Từ ( 1 ) và ( 2 ), ta có:
\(\Rightarrow x< -\dfrac{1}{2};x>\dfrac{3}{2}\)
\(\left(2-x\right)\times\left(\dfrac{4}{5}-x\right)< 0\)
Th1:
\(2-x>0\Leftrightarrow x>2\)
\(\dfrac{4}{5}-x< 0\Leftrightarrow x< \dfrac{4}{5}\)
( Loại )
Th2:
\(2-x< 0\Leftrightarrow x< 2\)
\(\dfrac{4}{5}-x>0\Leftrightarrow x>\dfrac{4}{5}\)
=> \(\dfrac{4}{5}< x< 2\)
`@` `\text {Ans}`
`\downarrow`
`(8x-3)(3x+2)-(4x+7)(x+4)=(2x+1)(5x-1)-33`
`\Leftrightarrow 8x(3x+2) -3(3x+2) - 4x(x+4) + 7(x+4) = 2x(5x-1) + 5x-1 - 33`
`\Leftrightarrow 24x^2 + 16x - 9x - 6 - 4x^2 - 16x - 7x - 28 = 10x^2 - 2x + 5x - 1 - 33`
`\Leftrightarrow 20x^2 -16x - 34 = 10x^2 + 3x - 34`
`\Leftrightarrow 20x^2 - 16x - 34 - 10x^2 - 3x + 34 = 0`
`\Leftrightarrow 10x^2 - 19x = 0`
`\Leftrightarrow x(10x - 19)=0`
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\10x-19=0\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\10x=19\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\x=\dfrac{19}{10}\end{matrix}\right.\)
Vậy, `x={0; 19/10}.`
a) Ta có: \(\sqrt{2x-1}\)
Biểu thức này có nghĩa là: \(2x-1\ge0\Leftrightarrow x\ge\dfrac{1}{2}\)
b) Ta có: \(\sqrt{4-x}\)
Biểu thức này có nghĩa là: \(4-x\ge0\Leftrightarrow x\le4\)
c) Ta có: \(\sqrt{\dfrac{3x}{2}}\)
Biểu thức này có nghĩa là: \(\dfrac{3x}{2}\ge0\Leftrightarrow x\ge0\)
d) Ta có: \(\sqrt{2x^2}\)
Biểu thức có nghĩa là: \(2x^2\ge0\Leftrightarrow x^2\ge0\) với mọi x
\(\left[{}\begin{matrix}\dfrac{1}{2}+2x=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{1}{2}\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Hình hiển thị bị lỗi rồi. Bạn nên gõ hẳn đề ra để được hỗ trợ tốt hơn nhé.
d) \(\left|2x-3\right|=x-3\)
TH1: \(\left|2x-3\right|=2x-3\) với \(2x-3\ge0\Leftrightarrow x\ge\dfrac{3}{2}\)
Pt trở thành:
\(2x-3=x-3\) (ĐK: \(x\ge\dfrac{3}{2}\) )
\(\Leftrightarrow2x-x=-3+3\)
\(\Leftrightarrow x=0\left(ktm\right)\)
TH2: \(\left|2x-3\right|=-\left(2x-3\right)\) với \(2x-3< 0\Leftrightarrow x< \dfrac{3}{2}\)
Pt trở thành:
\(-\left(2x-3\right)=x-3\)
\(\Leftrightarrow-2x+3=x-3\)
\(\Leftrightarrow-2x-x=-3-3\)
\(\Leftrightarrow-3x=-6\)
\(\Leftrightarrow x=-\dfrac{6}{-3}=2\left(ktm\right)\)
Vậy Pt vô nghiệm
\(5-\left|3x-1\right|=3\)
\(\left|3x-1\right|=2\)
\(\Rightarrow\orbr{\begin{cases}3x-1=2\\3x-1=-2\end{cases}}\Rightarrow\orbr{\begin{cases}3x=3\\3x=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-1}{3}\end{cases}}\)
vậy \(\orbr{\begin{cases}x=1\\x=\frac{-1}{3}\end{cases}}\)
\(\left|x+\frac{3}{4}\right|-5=-2\)
\(\left|x+\frac{3}{4}\right|=3\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{3}{4}=3\\x+\frac{3}{4}=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{9}{4}\\x=-\frac{15}{4}\end{cases}}\)
\(\left(1-2x\right)^2=9\)
\(\left(1-2x\right)^2=3^2\)
\(\Rightarrow1-2x=3\)
\(\Rightarrow2x=-2\)
\(\Rightarrow x=-1\)
vậy \(x=-1\)
\(\left(x+5\right)^3=-64\)
\(\left(x+5\right)^3=\left(-4\right)^3\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
vậy \(x=-9\)
\(\left(2x+1\right)^2=\frac{4}{9}\)
\(\left(2x+1\right)^2=\left(\frac{2}{3}\right)^2\)
\(\Rightarrow2x+1=\frac{2}{3}\)
\(\Rightarrow2x=\frac{-1}{3}\)
\(\Rightarrow x=\frac{-1}{6}\)
vậy \(x=-\frac{1}{6}\)