Cho tam giác ABC vuông góc tại A có đường cao AH. Các đường phân giác của các góc BAH và CAH cắt BC theo thứ tự tại D và E. Các đường trung trực của AE và AD cắt tại O. Chứng minh rằng AO là tia phân giác của góc BAC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.
a: Xét ΔAOM và ΔBOM có
OM chung
MA=MB
OA=OB
=>ΔAOM=ΔBOM
Xét ΔAON và ΔCON có
OA=OC
ON chung
NA=NC
=>ΔAON=ΔCON
b: ΔAOM=ΔBOM
=>góc OAM=góc OBM
ΔAON=ΔCON
=>góc OAN=góc OCN
OA=OB
OA=OC
=>OB=OC
=>góc OBN=góc OCM
=>góc OAM=góc OAN
=>AO là phân giác của góc MAN