K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2021

\(\left(3a+2b\right)\left(3a+2c\right)=16bc\Leftrightarrow\dfrac{3a+2b}{b}.\dfrac{3a+2c}{c}=16\Leftrightarrow\left(3x+2\right)\left(3y+2\right)=16\) với \(x=\dfrac{a}{b};y=\dfrac{a}{c}\).

Áp dụng bất đẳng thức AM - GM: \(16=\left(3x+2\right)\left(3y+2\right)\le\dfrac{\left(3x+3y+4\right)^2}{4}\Leftrightarrow x+y\le\dfrac{4}{3}\);

\(xy\le\dfrac{\left(x+y\right)^2}{4}\le\dfrac{4}{9}\).

Ta có: \(P=\dfrac{a^2+2a\left(b+c\right)+\left(b+c\right)^2}{a\left(b+c\right)}=\dfrac{a}{b+c}+\dfrac{b+c}{a}+2=\dfrac{xy}{x+y}+\dfrac{x+y}{xy}=\left(\dfrac{xy}{x+y}+\dfrac{x+y}{9xy}\right)+\dfrac{8\left(x+y\right)}{9xy}\ge2\sqrt{\dfrac{xy}{x+y}.\dfrac{x+y}{9xy}}+\dfrac{8\left(x+y\right)}{\dfrac{9\left(x+y\right)^2}{4}}=\dfrac{2}{3}+\dfrac{32}{9\left(x+y\right)}\ge\dfrac{2}{3}+\dfrac{32}{12}=\dfrac{2}{3}+\dfrac{8}{3}=\dfrac{10}{3}\).

Đẳng thức xảy ra khi \(3a=2b=2c>0\).

Vậy...

30 tháng 4 2020

\(a^2b^2c^2+\left(a+1\right)\left(1+b\right)\left(1+c\right)\ge a+b+c+ab+bc+ca+3\)

\(\Leftrightarrow\left(abc\right)^2+abc-2\ge0\Leftrightarrow\left(abc+2\right)\left(abc-1\right)\ge0\Leftrightarrow abc\ge1\)

Áp dụng BĐT Cosi ta có:

\(\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b+2c}{45}+\frac{2c+3a}{75}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)\left(2c+3b\right)}\cdot\frac{b+2c}{45}\cdot\frac{2c+3a}{75}}=\frac{a}{5}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c+2a}{45}+\frac{2a+3b}{75}\ge\frac{b}{5}\left(2\right)\\\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}+\frac{a+2b}{45}+\frac{2b+3c}{75}\ge\frac{c}{5}\left(3\right)\end{cases}}\)

Từ (1)(2)(3) ta có:

\(P+\frac{2\left(a+b+c\right)}{15}\ge\frac{a+b+c}{5}\Leftrightarrow P\ge\frac{1}{15}\left(a+b+c\right)\)

Mà \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow S\ge\frac{1}{5}\)

Dấu "=" xảy ra <=> a=b=c=1

3 tháng 5 2020

CHÚC BAN HỌC GIỎI

7 tháng 12 2017

bài 1

ÁP dụng AM-GM ta có:

\(\frac{a^3}{b\left(2c+a\right)}+\frac{2c+a}{9}+\frac{b}{3}\ge3\sqrt[3]{\frac{a^3.\left(2c+a\right).b}{b\left(2c+a\right).27}}=a.\)

tương tự ta có:\(\frac{b^3}{c\left(2a+b\right)}+\frac{2a+b}{9}+\frac{c}{3}\ge b,\frac{c^3}{a\left(2b+c\right)}+\frac{2b+c}{9}+\frac{a}{3}\ge c\)

công tất cả lại ta có:

\(P+\frac{2a+b}{9}+\frac{2b+c}{9}+\frac{2c+a}{9}+\frac{a+b+c}{3}\ge a+b+c\)

\(P+\frac{2\left(a+b+c\right)}{3}\ge a+b+c\)

Thay \(a+b+c=3\)vào ta được":

\(P+2\ge3\Leftrightarrow P\ge1\)

Vậy Min là \(1\)

dấu \(=\)xảy ra khi \(a=b=c=1\)

NV
14 tháng 5 2021

\(P=a^2-2a+b^2-2b+c^2-2c+3\)

\(P=\left(a^2+\dfrac{9}{4}\right)+\left(b^2+4\right)+\left(c^2+\dfrac{25}{4}\right)-2a-2b-2c-\dfrac{19}{2}\)

\(P\ge3a+4b+5c-2a-2b-2c-\dfrac{19}{2}\)

\(P\ge a+2b+3c-\dfrac{19}{2}=13-\dfrac{19}{2}=\dfrac{7}{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};2;\dfrac{5}{2}\right)\)

14 tháng 5 2021

Anh ;-; em chưa kịp làm :|

22 tháng 4 2023

\(A=a\left(a^2+2b\right)+b\left(b^2-a\right)\)

\(=a^3+b^3+ab\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)

\(=a^2-ab+b^2+ab\)

\(=a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}=\dfrac{1}{2}\)

Dấu "=" xảy ra khi a=b=1/2.

Vậy MinA=1/2.

(bất đẳng thức \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) thì bạn tự c/m nhé)

22 tháng 4 2023

ok cảm ơn bn

14 tháng 5 2021

Ta có: \(a+2b+3c=13\)

\(\Leftrightarrow\left(a-1\right)+2\left(b-1\right)+3\left(c-1\right)=7\)

Mà \(7^2=\left[\left(a-1\right)+2\left(b-1\right)+3\left(c-1\right)\right]^2\)

\(\le\left(1^2+2^2+3^2\right)\left[\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\right]\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge\frac{7}{2}\)

Dấu "=" xảy ra khi: \(a-1=\frac{b-1}{2}=\frac{c-1}{3}\Rightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=2\\c=\frac{5}{2}\end{cases}}\)