cho x + 2y = 1.tìm max của A = xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x-2y+3\Rightarrow x=A+2y-3\)
\(\Rightarrow\left(2y+A-3\right)^2+y\left(A+2y-3\right)+2y^2=1\)
\(\Leftrightarrow8y^2+\left(5A-15\right)y+A^2-6A+8=0\)
\(\Delta=\left(5A-15\right)^2-32\left(A^2-6A+8\right)\ge0\)
\(\Leftrightarrow-7A^2+42A-31\ge0\)
\(\Rightarrow\dfrac{21-4\sqrt{14}}{7}\le A\le\dfrac{21+4\sqrt{14}}{7}\)
\(xy+yz+zx=3xyz\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
Có \(\dfrac{1}{x+2y+3z}=\dfrac{1}{\left(x+y\right)+\left(y+z\right)+2z}\le\dfrac{1}{9}\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{2z}\right)\le\dfrac{1}{9}\left(\dfrac{1}{4x}+\dfrac{1}{4y}+\dfrac{1}{4y}+\dfrac{1}{4z}+\dfrac{1}{2z}\right)=\dfrac{1}{9}\left(\dfrac{1}{4x}+\dfrac{1}{2y}+\dfrac{3}{4z}\right)\)
Tương tự cx có: \(\dfrac{1}{y+2z+3x}\le\dfrac{1}{9}\left(\dfrac{1}{4y}+\dfrac{1}{2z}+\dfrac{3}{4x}\right)\);\(\dfrac{1}{z+2x+3y}\le\dfrac{1}{9}\left(\dfrac{1}{4z}+\dfrac{1}{2x}+\dfrac{3}{4y}\right)\)
Cộng vế với vế \(\Rightarrow\Sigma\dfrac{1}{x+2y+3z}\le\dfrac{1}{9}\left(\dfrac{1}{4}+\dfrac{1}{2}+\dfrac{3}{4}\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{2}\)
Dấu "=" xayra khi x=y=z=1
Vậy \(P_{max}=\dfrac{1}{2}\)
\(2y\ge xy+4\ge2\sqrt{4xy}=4\sqrt{xy}\)
\(\Rightarrow y^2\ge4xy\Rightarrow\dfrac{y}{x}\ge4\)
\(P=\dfrac{xy}{x^2+2y^2}=\dfrac{1}{\dfrac{x}{y}+\dfrac{2y}{x}}=\dfrac{1}{\dfrac{1}{16}\left(\dfrac{16x}{y}+\dfrac{y}{x}\right)+\dfrac{31}{16}.\dfrac{y}{x}}\)
\(\Rightarrow P\le\dfrac{1}{\dfrac{1}{16}.2\sqrt{\dfrac{16xy}{xy}}+\dfrac{31}{16}.4}=\dfrac{4}{33}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;4\right)\)
\(x^2+y^2=xy+1\Rightarrow\left(x^2+y^2\right)^2=\left(xy+1\right)^2\)do hai vế lớn hơn hoặc bằng 0
\(\Rightarrow x^4+y^4+2x^2y^2=x^2y^2+2xy+1\)
\(\Rightarrow x^4+y^4-x^2y^2=-2x^2y^2+2xy+1\)
\(\Rightarrow x^4+y^4-x^2y^2=-2\left(xy+\frac{1}{2}\right)^2+\frac{3}{2}\le\frac{3}{2}\)
\(\Rightarrow\left(x^4+y^4-x^2y^2\right)_{max}=\frac{3}{2}\)đạt được khi \(xy=-\frac{1}{2}\)
\(x+2y=1\Leftrightarrow x=1-2y\Leftrightarrow A=xy=\left(1-2y\right)y=y-2y^2=\frac{1}{8}-\left(2y^2-y+\frac{1}{8}\right)=\frac{1}{8}-2\left(y^2-2.\frac{1}{4}.y+\frac{1}{16}\right)=\frac{1}{8}-2\left(y-\frac{1}{4}\right)^2\)
Vì \(\left(y-\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x-\frac{1}{4}\right)^2\ge0\Rightarrow\frac{1}{8}-2\left(y-\frac{1}{4}\right)^2\ge\frac{1}{8}\)
Dấu "=" xảy ra khi \(\left(y-\frac{1}{4}\right)^2=0\Rightarrow y-\frac{1}{4}=0\Rightarrow y=\frac{1}{4}\Rightarrow x=\frac{1}{2}\)
Vậy Amax=1/8 khi x=1/2 và y=1/4
tìm max của A=xy nghĩa là j ?