K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BMDH có

gócc BMD+góc BHD=180 độ

=>BMDH là tứ giác nội tiếp

b: góc AMN+góc OAM

=góc ADN+(180 độ-góc AOB)/2

=90 độ-góc HAC+90 độ-góc AOB/2

=180 độ-(90 độ-góc ACB)-góc ACB

=90 độ

=>MN vuông góc AO

=>MN//tiếp tuyến tại A của (O)

29 tháng 4 2023

- Xét △AMD và △AHB có: \(\widehat{AMD}=\widehat{AHB}\left(=90^0\right)\)\(\widehat{BAH}\) là góc chung.

\(\Rightarrow\Delta AMD\sim\Delta AHB\left(g-g\right)\)

\(\Rightarrow\dfrac{AM}{AH}=\dfrac{AD}{AB}\Rightarrow AM.AB=AD.AH\left(1\right)\)

- Xét △AND và △AHC có: \(\widehat{AND}=\widehat{AHC}=90^0\)\(\widehat{CAH}\) là góc chung.

\(\Rightarrow\Delta AND\sim\Delta AHC\left(g-g\right)\)

\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AN}{AH}\Rightarrow AD.AH=AN.AC\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow AM.AB=AN.AC\Rightarrow\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét △AMN và △ACB có: \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)(cmt), \(\widehat{BAC}\) là góc chung.

\(\Rightarrow\Delta AMN\sim\Delta ACB\left(c-g-c\right)\)

\(\Rightarrow\widehat{AMN}=\widehat{ACB}\)

Ta có \(OA=OB\) nên △OAB cân tại O.

\(\Rightarrow\widehat{OAB}=\dfrac{180^0-\widehat{AOB}}{2}\)

Xét (O): \(\widehat{AOB}=2\widehat{ACB}\left(=sđ\stackrel\frown{AB}\right)\)

\(\Rightarrow\widehat{OAB}=\dfrac{180^0-2\widehat{ACB}}{2}=90^0-\widehat{ACB}\)

\(\Rightarrow\widehat{OAB}+\widehat{AMN}=90^0\) nên MN vuông góc với OA.

=>MN song song với tiếp tuyến tại A của (O) (vì OA là bán kính của (O) ).

29 tháng 4 2023

Anh ngầu wá

a) Xét tứ giác AHBI có 

\(\widehat{AHB}\) và \(\widehat{AIB}\) là hai góc đối

\(\widehat{AHB}+\widehat{AIB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AHBI là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

hay A,H,B,I cùng nằm trên một đường tròn(đpcm)

14 tháng 2 2021

b) Xét đường tròn (O; R) có \(\widehat{ABI}=\widehat{ACB}\) (cùng chắc cung AB)

=> \(\widehat{ABI}=\widehat{ACH}\)

Xét ΔABI và ΔACH có: \(\widehat{AIB}=\widehat{AHC}\) (=90o)

                                      \(\widehat{ABI}=\widehat{ACH}\) (cmt)

=> ΔABI ~ ΔACH (g.g) => \(\dfrac{AB}{AC}=\dfrac{AI}{AH}\)=> AI.AC = AH.AB

c) CMTT câu b => ΔABH ~ ΔACK (g.g) => \(\dfrac{AB}{AC}=\dfrac{AH}{AK}\)

=> \(\dfrac{AI}{AH}=\dfrac{AH}{AK}\left(=\dfrac{AB}{AC}\right)\) => AH2 = AI.AK

9 tháng 2 2018

+ ) Ta thấy ngay hai tam giác vuông AHC và ANC có chung cạnh huyền AC nên A, H, N, C cùng thuộc đường tròn đường kính AC.

\(\Rightarrow\widehat{HNA}=\widehat{HCA}\) (Hai góc nội tiếp cùng chắn cung AH)

Ta thấy ngay hai tam giác vuông AMB và AHB có chung cạnh huyền AB nên A, M, H, B cùng thuộc đường tròn đường kính AB.

\(\Rightarrow\widehat{HMN}=\widehat{ABH}\) (Góc ngoài tại đỉnh đối diện bằng góc trong tại đỉnh)

Vậy nên \(\Delta ABC\sim\Delta HMN\left(g-g\right)\)

+) Ta có \(\widehat{ADC}=\widehat{ABC}\)  (Hai góc nội tiếp cùng chắn cung AC)

Mà \(\Delta ABC\sim\Delta HMN\Rightarrow\widehat{ABC}=\widehat{HMN}\) 

nên \(\widehat{ADC}=\widehat{HMN}\)

Chúng lại ở vị trí so le trong nên DC // HM

Ta có \(DC\perp AC\Rightarrow HM\perp AC\)

Gọi J là trung điểm AB

Ta có ngay IJ là đường trung bình tam giác ABC nên IJ // AC

Vậy nên \(HM\perp IJ\)

Mà J là tâm đường tròn ngoại tiếp tứ giác AMHB nên IJ vuông góc cung HM tại trung điểm HM hay IJ là trung trực của HM.

Vậy thì IM = IH.

Tương tự ta có IM = IH = IN hay I là tâm đường tròn ngoại tiếp tam giác HMN.

11 tháng 2 2018

ad dqi

4 tháng 3 2022

a, Xét tứ giác CDME có 

^MEC = ^MDC = 900

mà 2 góc này kề, cùng nhìn cạnh MC 

Vậy tứ giác CDME là tứ giác nt 1 đường tròn 

b, bạn ktra lại đề 

29 tháng 5 2018

a ) 

Xét tứ giác AHBI , ta có : 

\(\widehat{I_2}=90^o\left(gt\right)\)

\(\widehat{H_1}=90^o\left(gt\right)\)

\(\widehat{I_2}+\widehat{H_1}=90^o+90^o=180^o\)

Vay : tứ giác AHBI nội tiếp 

Xét tứ giác AHCK , ta có : 

\(\widehat{K_2}=90^O\left(gt\right)\)

\(\widehat{H_2}=90^o\left(gt\right)\)

\(\widehat{K_2}+\widehat{H_2}=90^o+90^o=180^o\)

Vậy tứ giác AHCK nội tiếp 

13 tháng 6 2021

1) Ta có: \(\angle AEB+\angle ADB=90+90=180\Rightarrow AEBD\) nội tiếp

2) Tương tự ta chứng minh được: \(ADCF\) nội tiếp

\(\Rightarrow\angle ADF=\angle ACF=\angle ABC\)

3) Ta có: \(\angle AED=\angle ABC=\angle ADF\)

Tương tự \(\Rightarrow\angle ADE=\angle AFD\)

Xét \(\Delta ADE\) và \(\Delta AFD:\) Ta có: \(\left\{{}\begin{matrix}\angle ADE=\angle AFD\\\angle AED=\angle ADF\end{matrix}\right.\)

\(\Rightarrow\Delta ADE\sim\Delta AFD\left(g-g\right)\Rightarrow\dfrac{AD}{AF}=\dfrac{AE}{AD}\Rightarrow AD^2=AE.AF\)

4) \(\Delta ADE\sim\Delta AFD\Rightarrow\angle DAE=\angle DAF\)

\(\Rightarrow AD\) là phân giác \(\angle EAF\)

Vì M,N là trung điểm AE,AF \(\Rightarrow\left\{{}\begin{matrix}AM=\dfrac{1}{2}AE\\AN=\dfrac{1}{2}AF\end{matrix}\right.\)

Theo đề: \(AD=AM+AN\Rightarrow AD^2=\left(AM+AN\right)^2\)

\(\Rightarrow AE.AF=\dfrac{1}{4}\left(AE+AF\right)^2\Rightarrow4AE.AF=\left(AE+AF\right)^2\)

mà \(\left(AE+AF\right)^2\ge4AE.AF\) (BĐT Cô-si) 

\(\Rightarrow AE=AF\Rightarrow\Delta AEF\) cân tại A có \(AD\) là phân giác \(\angle EAF\)

\(\Rightarrow AD\) là trung trực \(EF\Rightarrow AD\bot EF\) mà \(AD\bot BC\)

\(\Rightarrow BC\parallel EF\) 

Ta có: \(\angle EBC=\angle EBA+\angle ABC=\angle ACB+\angle ACF=\angle FCB\)

\(\Rightarrow BCFE\) là hình thang cân có \(AD\) là trung trực EF

\(\Rightarrow AD\) là trung trực BC mà \(O\in\) trung trực BC

\(\Rightarrow A,O,D\) thẳng hàng

undefined