K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2017

Giải:

ĐKXĐ của P là \(x\ge2\)và \(x\ne5\)

Phân tích tử:

x-5 = x-2-3 

     = (\(\sqrt{x-2}\)-\(\sqrt{3}\))(\(\sqrt{x-2}\)+\(\sqrt{3}\))

Xét P=\(\frac{\left(\sqrt{x-2}-\sqrt{3}\right)\left(\sqrt{x-2}+\sqrt{3}\right)}{\sqrt{x-2}-\sqrt{3}}\)

       = \(\sqrt{x-2}+\sqrt{3}\)

=> Min P= \(\sqrt{3}\)khi X=2.

Mình chỉ có thể tìm GTNN, còn GTLN thì mk chịu.

20 tháng 4 2020

ĐK: x > 0

a) Rút gọn M 

M =  \(\frac{\sqrt{x}}{x+\sqrt{x}}:\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}:\left(\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)

\(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}:\left(\frac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)

\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

b) \(\frac{1}{M}=\frac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+\frac{1}{\sqrt{x}}+1\ge2+1=3\)

=> M \(\le\)1/3

=> GTLN của M =1/ 3 khi \(\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=1\) thỏa mãn

Vậy max M = 1/3 tại x = 1

20 tháng 4 2020

bn giải thíchcách làm câu b hôk mk vs mk ko hiểu

11 tháng 12 2020

Ta có: \(y=\sqrt{3+x}+\sqrt{5-x}\)

ĐKXĐ: \(-3\le x\le5\)

\(y^2=3+x+5-x+2\sqrt{\left(3+x\right)\left(5-x\right)}=8+2\sqrt{\left(3+x\right)\left(5-x\right)}\)\(\ge8\)

\(\Rightarrow y\ge2\sqrt{2}\)

Dấu "=" xảy ra khi và chỉ khi \(\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)(thỏa mãn)

Vậy min y = \(2\sqrt{2}\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

mặt khác \(y^2\) = \(8+2\sqrt{\left(3+x\right)\left(5-x\right)}\le8+3+x+5-x=16\)

\(\Rightarrow y\le4\)

Dấu"=" xảy ra khi và chỉ khi \(3+x=5-x\Leftrightarrow x=1\)(thỏa mãn)

Vậy max y = 4 \(\Leftrightarrow x=1\)

3 tháng 7 2018

ĐK:  \(x\ge0;x\ne9\)

\(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}+\frac{3x+9}{x-9}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}-3\right)+3x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-3\sqrt{x}+2x-6\sqrt{x}+3x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-9x+9}{x-9}\)

10 tháng 9 2020

Xét P-1 = \(\frac{\sqrt{x}+3}{\sqrt{x}+2}-1\)
P-1 = \(\frac{\sqrt{x}+3-\sqrt{x}-2}{\sqrt{x}+2}=\frac{1}{\sqrt{x}+2}\)
Nhận xét : \(\hept{\begin{cases}1>0\\\sqrt{x}+2>0\end{cases}}vớimoix\)
-> P-1 >0 với mọi x
-> P>1
Thay x=6-2 căn 5 vào P -> P=\(\frac{\sqrt{6-2\sqrt{5}}+3}{\sqrt{6-2\sqrt{5}+2}}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}+3}{\sqrt{\left(\sqrt{5}-1\right)^2}+3}\)

=\(\frac{\sqrt{5}-1+3}{\sqrt{5}-1+2}=\frac{\sqrt{5}+3}{\sqrt{5}+1}\)

10 tháng 9 2020

\(P=\frac{\sqrt{x}+3}{\sqrt{x}+2}\)( ĐKXĐ : \(x\ge0\))

1) Ta có : \(P=\frac{\sqrt{x}+3}{\sqrt{x}+2}=\frac{\sqrt{x}+2+1}{\sqrt{x}+2}=1+\frac{1}{\sqrt{x}+2}\)

Vì \(\frac{1}{\sqrt{x}+2}>0\left(\forall x\ge0\right)\)

Cộng 1 vào mỗi vế => \(1+\frac{1}{\sqrt{x}+2}>1\)

Vậy P > 1

2) Với \(x=6-2\sqrt{5}\)( tmđk )

Khi đó \(P=1+\frac{1}{\sqrt{6-2\sqrt{5}}+2}\)

\(P=1+\frac{1}{\sqrt{5-2\sqrt{5}+1}+2}\)

\(P=1+\frac{1}{\sqrt{\left(\sqrt{5}-1\right)^2}+2}\)

\(P=1+\frac{1}{\left|\sqrt{5}-1\right|+2}\)

\(P=1+\frac{1}{\sqrt{5}-1+2}\)

\(P=1+\frac{1}{\sqrt{5}+1}\)

\(P=\frac{\sqrt{5}+1}{\sqrt{5}+1}+\frac{1}{\sqrt{5}+1}\)

\(P=\frac{\sqrt{5}+1+1}{\sqrt{5}+1}=\frac{\sqrt{5}+2}{\sqrt{5}+1}\)

15 tháng 2 2017

Bạn tự thu gọn thành 1+\(\frac{1}{\sqrt{x}+2}\) <= 1+\(\frac{1}{2}\)=\(\frac{3}{2}\) <=> x = 0