Tìm số tự nhiên a,b biết : 2a+124=5b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Với \(a=0\Rightarrow1+124=5^b\Rightarrow b=3\)
Với \(a>0\Rightarrow2^a\) luôn chẵn \(\Rightarrow2^a+124\) luôn chẵn
Mà \(5^b\) luôn lẻ \(\Rightarrow\) không tồn tại \(a>0\) thỏa mãn
Vậy \(\left(a;b\right)=\left(0;3\right)\)
b.
\(3^a\) và \(9^b\) đều luôn lẻ \(\Rightarrow3^a+9^b\) luôn chẵn
Mà 183 lẻ \(\Rightarrow\) không tồn tại a; b thỏa mãn
c.
\(a=0\Rightarrow1+80=3^b\Rightarrow b=4\)
Với \(a>0\Rightarrow2^a\) chẵn \(\Rightarrow2^a+80\) chẵn
Mà \(3^b\) luôn lẻ \(\Rightarrow\) ko tồn tại \(a>0\) thỏa mãn
Vậy \(\left(a;b\right)=\left(0;4\right)\)
xét hiệu:A=4(9x+y)-(7x+4y)
A=36x+4y-7x-4y
A=29x\(\Rightarrow\)A chia hết cho29
mà 7x+4y chia hết cho29\(\Rightarrow\)4(9x+y) chia hết cho 29
vì (4;29)=1\(\Rightarrow\)9x+y chia het cho 29
Vậy nếu 7x+4y chiahet cho 29 thi 9x+y chia hết cho 29
Học tốt!
Bài 2 :
a) \(2^a+154=5^b\left(a;b\inℕ\right)\)
-Ta thấy,chữ số tận cùng của \(5^b\) luôn luôn là chữ số \(5\)
\(\Rightarrow2^a+154\) có chữ số tận cùng là \(5\)
\(\Rightarrow2^a\) có chữ số tận cùng là \(1\) (Vô lý, vì lũy thừa của 2 là số chẵn)
\(\Rightarrow\left(a;b\right)\in\varnothing\)
b) \(10^a+168=b^2\left(a;b\inℕ\right)\)
Ta thấy \(10^a\) có chữ số tận cùng là số \(0\)
\(\Rightarrow10^a+168\) có chữ số tận cùng là số \(8\)
mà \(b^2\) là số chính phương (không có chữ số tận cùng là \(8\))
\(\Rightarrow\left(a;b\right)\in\varnothing\)
Bài 3 :
a) \(M=19^k+5^k+1995^k+1996^k\left(với.k.chẵn\right)\)
Ta thấy :
\(5^k;1995^k\) có chữ số tận cùng là \(5\) (vì 2 số này có tận cùng là \(5\))
\(\Rightarrow5^k+1995^k\) có chữ số tận cùng là \(0\)
mà \(1996^k\) có chữ số tận cùng là \(6\) (ví số này có tận cùng là số \(6\))
\(\Rightarrow5^k+1995^k+1996^k\) có chữ số tận cùng là chữ số \(6\)
mà \(19^k\left(k.chẵn\right)\) có chữ số tận cùng là số \(1\)
\(\Rightarrow M=19^k+5^k+1995^k+1996^k\) có chữ số tận cùng là số \(7\)
\(\Rightarrow M\) không thể là số chính phương.
b) \(N=2004^{2004k}+2003\)
Ta thấy :
\(2004k=4.501k⋮4\)
mà \(2004\) có chữ số tận cùng là \(4\)
\(\Rightarrow2004^{2004k}\) có chữ số tận cùng là \(6\)
\(\Rightarrow N=2004^{2004k}+2003\) có chữ số tận cùng là \(9\)
\(\Rightarrow N\) có thể là số chính phương (nên câu này bạn xem lại đề bài)
\(\left(9a+5b+3\right)⋮17\Leftrightarrow4\left(9a+5b+3\right)⋮17\)
\(\Leftrightarrow\left(36a-2.17a+20b-17b+12-17\right)⋮17\)
\(\Leftrightarrow\left(2a+3b-5\right)⋮17\)
a: 3x=2y
nên x/2=y/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x-y}{2-3}=\dfrac{1}{-1}=-1\)
Do đó: x=-2; y=-3
\(A=\left(-2\right)^3+12\cdot\left(-2\right)^2\cdot\left(-3\right)+48\cdot\left(-2\right)\cdot\left(-3\right)^2-64\cdot\left(-3\right)^3\)
\(=-8+12\cdot4\cdot\left(-3\right)-96\cdot9-64\cdot\left(-27\right)\)
\(=712\)
b: 6a=5b
nên a/5=b/6
Đặt a/5=b/6=k
=>a=5k; b=6k
\(B=\dfrac{2a-3b}{3b-2a}=-1\)
d: \(\left|x-2\right|+\left(y-1\right)^2=0\)
=>x-2=0 và y-1=0
=>x=2 và y=1
\(D=\left|2-2\right|+\dfrac{2-1}{2-1}=0+1=1\)
Ta có :
2a + 124 = 5b
=> 20 + a + 124 = 50 + b
=> 144 + a = 50 + b
=> a - b = 144 - 55
=> a - b = 89
Mà a - b lớn nhất là 9 - 0 = 9 < 89
=> a,b không tồn tại.
Vậy không tìm được chữ số a,b thỏa mãn đề bài.
các bạn **** tớ đi trả lời đầu tiên mà