K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔBAC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{12}=\dfrac{CD}{20}\)

mà BD+CD=28cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{12}=\dfrac{CD}{20}=\dfrac{BD+CD}{12+20}=\dfrac{28}{32}=\dfrac{7}{8}\)

Do đó: BD=10,5cm; CD=17,5cm

Xét ΔBAC có 

DE//AB

nên \(\dfrac{DE}{AB}=\dfrac{CD}{BC}\)

\(\Leftrightarrow DE=\dfrac{17.5}{28}\cdot12=7.5\left(cm\right)\)

a: Xét ΔABD và ΔECD có

góc ADB=góc EDC

góc ABD=góc ECD

=>ΔABD đồng dạng với ΔECD

b: AD là phân giác

=>DB/AB=DC/AC

=>DB/8=DC/12

=>DB/2=DC/3=(DB+DC)/(2+3)=15/5=3

=>DB=6cm; DC=9cm

a) Xét ΔABD vuông tại A và ΔIBD vuông tại I có

BD chung

\(\widehat{ABD}=\widehat{IBD}\)(BD là tia phân giác của \(\widehat{ABI}\))

Do đó: ΔABD=ΔIBD(cạnh huyền-góc nhọn)

Suy ra: DA=DI(hai cạnh tương ứng)

mà DI<DC(ΔDIC vuông tại I)

nên DA<DC

a) Xét ΔABD vuông tại A và ΔIBD vuông tại I có

BD chung

\(\widehat{ABD}=\widehat{IBD}\)(BD là tia phân giác của \(\widehat{ABI}\))

Do đó: ΔABD=ΔIBD(Cạnh huyền-góc nhọn)

Suy ra: DA=DI(hai cạnh tương ứng)

mà DI<DC

nên DA<DC

12 tháng 12 2021

Gọi Bx là tia đối của tia BA. Lấy E trên AC sao cho AB = AE

Xét tam giác BAD=EAD c-g-c => BD = DE và DEC = CBx 

Trong tam giác ABC, BAC + ABC + ACB = 180 => ACB = 180 - BAC - ABC => ACB < 180 - ABC

Ta có DBx + ABC = 180 (hai góc kề bù) => DBx = 180 - ABC

=>ACB < DBx => ACB < DEC => Trong tam giác DEC, DC > DE (Quan hệ giữa góc và cạnh)

Vậy BD < DC