Cho phân số \(\frac{4}{5}\). Cùng cộng thêm 3 vào tử và mẫu của phân số thì được phân số lớn hơn hay bé hơn \(\frac{4}{5}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a< b\Rightarrow am< bm\)
\(\Rightarrow ab+am< ab+bm\)
\(\Rightarrow a\left(b+m\right)< b\left(a+m\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
\(\frac{a}{b}< \frac{a+m}{b+m}\) \(\left(\frac{a}{b}< 1;a,b,m\inℕ^∗\right)\)
Vì :
\(\frac{a}{b}< \frac{a+m}{b+m}\)
\(\Leftrightarrow\)\(a\left(b+m\right)< b\left(a+m\right)\)
\(\Leftrightarrow\)\(ab+am< ab+bm\)
\(\Leftrightarrow\)\(am< bm\)
\(\Leftrightarrow\)\(a< b\)
Vậy \(\frac{a}{b}< \frac{a+m}{b+m}\) nếu \(a< b\)
Chúc bạn học tốt ~
\(\frac{a}{b}< \frac{a+m}{b+m}\)
\(\left(\frac{a}{b}< 1,a,b,m\in N\right)\)là N* nha.
Vì:
\(\frac{a}{b}< \frac{a+m}{b+m}\)
\(\Leftrightarrow a\left(b+m\right)< b\left(a+m\right)\)
\(\Leftrightarrow ab+am< ab+bm\)
\(\Leftrightarrow am< bm\)
\(\Leftrightarrow a< b\)
Vậy \(\frac{a}{b}< \frac{a+m}{b+m}\)nếu \(a< b\)
Nhớ gửi cách giải hộ mình luôn nha!
Cộng thêm tử và mẫu thêm 3 đơn vị thì phân số mới là;
\(\frac{4+3}{5+3}\)
Gạch bỏ số giống nhau, ta vẫn được phân số cũ, đó là:
\(\frac{4}{5}\)
Vậy: Cùng cộng thêm tử và mẫu thêm 3 đơn vị thì phân số vẫn bằng nhau!