Cho DABC, gọi M là trung điểm của AB, qua điểm M kẻ đường thẳng song song với BC cắt AC tại N, qua điểm N kẻ đường thẳng song song với AB cắt BC tại Q.
a. Chứng minh: DMNQ = DQBM
b. Chứng minh: AM = NQ
c. Chứng minh: N là trung điểm của AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao và AM là phân giác của \(\widehat{BAC}\)
Xét tứ giác APMQ có
AP//MQ
AQ//MP
Do đó: APMQ là hình bình hành
Hình bình hành APMQ có AM là phân giác của góc PAQ
nên APMQ là hình thoi
b: Xét ΔABC có
M là trung điểm của BC
MP//AC
Do đó: P là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MQ//AB
Do đó: Q là trung điểm của AC
Xét ΔABC có
P,Q lần lượt là trung điểm của AB,AC
=>PQ là đường trung bình của ΔABC
=>PQ//BC
c: Xét ΔABC có M,Q lần lượt là trung điểm của CB,CA
=>MQ là đường trung bình của ΔABC
=>MQ//AB và \(MQ=\dfrac{AB}{2}\)
mà \(MQ=\dfrac{MD}{2}\)
nên MD=AB
MQ//AB
=>MD//AB
Xét tứ giác ABMD có
AB//MD
AB=MD
Do đó: ABMD là hình bình hành
d: Xét tứ giác AMCD có
Q là trung điểm chung của AC và MD
Do đó: AMCD là hình bình hành
Hình bình hành AMCD có \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
Hình chữ nhật AMCD muốn trở thành hình vuông thì CA là phân giác của góc MCD
=>\(\widehat{ACB}=\dfrac{1}{2}\cdot90^0=45^0\)
đọc mà rối loạn tâm chí, chi co cao thủ như các thầy cô giáo mới làm đc
a: Xét ΔAMD và ΔCMB có
góc AMD=góc CMB
MA=MC
góc MAD=góc MCB
=>ΔAMD=ΔCMB
b: Xét ΔCEA có BM//AE
nên BM/AE=CM/CA=1/2
=>AE=2BM
c: Xét tứ giác ADBE có
AD//BE
AE//BD
=>ADBE là hbh
=>AB cắt DE tại trung điểm của mỗi đường
=>E,N,D thẳng hàng
a: Xét tứ giác BMNP có
BM//NP
MN//BP
Do đó: BMNP là hình bình hành
b:
Xét ΔABC có
M là trung điểm của AB
MN//BC
Do đó: N là trung điểm của AC
Xét tứ giác APCQ có
N là trung điểm chung của AC và PQ
=>APCQ là hình bình hành
c: Xét ΔABC có
N là trung điểm của AC
NP//AB
Do đó: P là trung điểm của CB
Để AQCP là hình thoi thì AP=CP
mà CP=BC/2
nên AP=BC/2
Xét ΔABC có
AP là đường trung tuyến
\(AP=\dfrac{BC}{2}\)
Do đó: ΔABC vuông tại A
=>\(\widehat{BAC}=90^0\)
a: Xét tứ giác AKMN có
MN//AK
AN//MK
Do đó: AKMN là hình bình hành
mà \(\widehat{NAK}=90^0\)
nên AKMN là hình chữ nhật
b: Xét ΔAMQ có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAMQ cân tại A
mà AN là đường cao
nên AN là tia phân giác của góc MAQ(1)
Xét ΔAME có
AK là đường cao
AK là đường trung tuyến
DO đó: ΔAME cân tại A
mà AK là đường cao
nên AK là tia phân giác của góc MAE(2)
Từ (1) và (2) suy ra \(\widehat{QAE}=2\cdot\left(\widehat{MAN}+\widehat{MAK}\right)=2\cdot90^0=180^0\)
hay Q,E,A thẳng hàng
a: Xét tứ giác ABCD có
AD//BC
AB//DC
Do đó: ABCD là hình bình hành
Suy ra: AB=DC; AD=CB
a: Xét ΔMNQ va ΔQBM có
góc QMN=goc MQB
QM chung
góc MQN=góc QMB
=>ΔMNQ=ΔQBM
b: Xét tứ giác MNQB có
MN//QB
MB//NQ
=>MNQB là hình bình hành
=>NQ=MB=AM
c: Xét ΔABC có
M là trung điểm của AB
MN//BC
=>N là trug điểm của AC
hog phải, ở tứ giác mình nối MQ lại để thành t giác, phù hợp với câu hỏi đề bài